Neurotoxicity research
-
Neurotoxicity research · Jan 2003
Down regulation of sodium channel Na(v)1.1 expression by veratridine and its reversal by a novel sodium channel blocker, RS100642, in primary neuronal cultures.
This study investigated the effects of veratridine-induced neuronal toxicity on sodium channel gene (NaCh) expression in primary forebrain cultures enriched in neurons, and its reversal by a novel sodium channel blocker, RS100642. Using quantitative RT-PCR, our findings demonstrated the expression ratio of NaCh genes in normal fetal rat forebrain neurons to be Na(v)1.2 > Na(v)1.3 > Na(v)1.8 > Na(v)1.1 > Na(v)1.7 (rBII > rBIII > PN3 > rBI > PN1). ⋯ However, treatment of neurons with RS100642 (200 micro M) reversed the down-regulation of the Na(v)1.1 gene expression caused by veratridine. Our findings document for the first time quantitative and relative changes in the expression of various NaCh genes in neurons following injury produced by selective activation of voltage-gated sodium channels, and suggest that the Na(v)1.1 sodium channel gene may play a key role in the neuronal injury/recovery process.
-
Neurotoxicity research · Jan 2003
Hyperactivity following postnatal NMDA antagonist treatment: reversal by D-amphetamine.
Three experiments were performed to study the effects of neonatal administration of glutamate receptor antagonists, on either Day 11 (dizocilpine = MK-801, 3 x 0.5 mg/kg, s.c., injected at 0800, 1600 and 2400 h) or Day 10 (Ketamine, 1 x 50 mg/kg, s.c., or Ethanol-Low, 1 x 2.5 mg/kg, or, Ethanol-High, 2 x 2.5 mg/kg, s.c., with 2-h interval) to male mice pups, on spontaneous motor behavior, habituation to a novel situation and D-amphetamine-induced activity in the adult animals. Mice administered MK-801 showed initial hypoactivity followed by hyperactivity over the later (20-40 and 40-60 min) periods of testing. Mice administered Ketamine and Ethanol-High similarly displayed an initial hypoactivity followed by hyperactivity over the later time (20-60 min) of testing. ⋯ Fluoro-jade staining per mm(2) regional brain tissue of MK-801 mice pups expressed as percent of vehicle mice pups showed also that the extensiveness of staining was markedly greater in the parietal cortex, hippocampus, frontal cortex, and lesser so in the laterodorsal thalamus. Ketamine-treated mice showed cell degeneration mainly in the parietal cortex, whereas the Ethanol-High mice showed marked cell degeneration in both the parietal and laterodorsal cortex. The present findings that encompass a pattern of regional neuronal degeneration, disruptions of spontaneous motor activity, habituation deficits and reversal of hyperactivity by a low dose of D-amphetamine suggest a model of Attention Deficit Hyperactivity Disorder that underlines the intimate role of N-methyl-D-aspartate (NMDA) receptors in the developing brain.