Neurotoxicity research
-
Neurotoxicity research · Nov 2009
Randomized Controlled Trial Clinical TrialPotentiation of local anesthetic activity of neosaxitoxin with bupivacaine or epinephrine: development of a long-acting pain blocker.
Local anesthetics effectively block and relieve pain, but with a relatively short duration of action, limiting its analgesic effectiveness. Therefore, a long-acting local anesthetic would improve the management of pain, but no such agent is yet available for clinical use. The aim of this study is to evaluate the potentiation of the anesthetic effect of neosaxitoxin, with bupivacaine or epinephrine in a randomized double-blind clinical trial. ⋯ The duration of the effect produced by combined treatments was longer than that by the single drugs. In conclusion, bupivacaine and epinephrine potentiate the local anesthetic effect of neosaxitoxin in humans when co-injected subcutaneously. The present results support the idea that neosaxitoxin is a new long-acting local pain blocker, with highly potential clinical use.
-
Neurotoxicity research · Nov 2009
The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury.
Edaravone is a novel free radical scavenger that is clinically employed in patients with acute cerebral infarction, but has not previously been used to treat traumatic brain injury (TBI). In this study, we investigated the effect of edaravone administration on rat TBI. In particular, we used immunohistochemistry to monitor neural stem cell (NSC) proliferation around the area damaged by TBI. ⋯ Moreover, the spheres differentiated into Tuj1-, GFAP-, and O4-positive cells after 4 days in culture without bFGF. This result indicated that the spheres were neurospheres composed of NSCs that could differentiate into neurons and glia. Edaravone administration inhibited production of free radicals known to induce neuronal degeneration and cell death after brain injury, and protected nestin-positive cells, including NSCs, with the potential to differentiate into neurons and glia around the area damaged by TBI.