The cancer journal
-
Aberrant DNA methylation patterns, including hypermethylation of tumor suppressor genes, have been described in many human cancers. These epigenetic mutations can be reversed by DNA methyltransferase inhibitors, which provide novel opportunities for cancer therapy. Clinical concepts for epigenetic therapies are currently being developed by using azanucleosides for the treatment of leukemias and other tumors. ⋯ In addition, novel inhibitors need to be developed that result in a direct and specific inhibition of DNA methyltransferase activity. Several recent developments indicate that rational design of small molecule DNA methyltransferase inhibitors is feasible and that this approach can result in the establishment of novel drug candidates. The use of novel DNA methyltransferase inhibitors in clinical trials that allow monitoring of drug-induced DNA methylation changes should provide the foundation for improved epigenetic cancer therapies.
-
Lung cancer is a disease with enormous global medical and economic impact that remains refractory to conventional treatment modalities. Recent insights regarding mechanisms pertaining to epigenetic regulation of gene expression during malignant transformation, together with the identification of agents that modulate chromatin structure provide new opportunities for the treatment and prevention of this lethal disease.