Chembiochem : a European journal of chemical biology
-
Zinc is well-known to have a central role in human inflammation and immunity and is itself an anti-inflammatory and antiviral agent. Despite its massively documented role in such processes, the underlying chemistry of zinc in relation to specific proteins and pathways of the immune system has not received much focus. This short review provides an overview of this topic, with emphasis on the structures of key proteins, zinc coordination chemistry, and probable mechanisms involved in zinc-based immunity, with some focus points for future chemical and biological research.
-
Metabolic chemical reporters (MCRs) of protein glycosylation are analogues of natural monosaccharides that bear reactive groups, like azides and alkynes. When they are added to living cells and organisms, these small molecules are biosynthetically transformed into nucleotide donor sugars and then used by glycosyltransferases to modify proteins. Subsequent installation of tags by bioorthogonal chemistries can then enable the visualization and enrichment of these glycoproteins. ⋯ Here, we directly test this possibility with recombinant human GFAT and a small panel of synthetic UDP-MCRs. We find that MCRs with larger substitutions at the N-acetyl position do not inhibit GFAT, whereas those with modifications of the 2- or 6-hydroxy group do. These results further illuminate the considerations that should be applied to the use of MCRs.
-
Polo-like kinase 1 (Plk1), a key player in mitosis, is overexpressed in a wide range of tumor types and has been validated as a target for tumor therapy. In addition to its N-terminal kinase domain, Plk1 harbors a C-terminal protein-protein interaction domain, referred to as the polo-box domain (PBD). ⋯ Although peptide-based inhibitors are invaluable tools for elucidating the nature of the binding interface, small molecules are better suited for the induction of mitotic arrest and apoptosis in tumor cells by Plk1 inhibition. This review describes the considerable progress that has been made in developing small-molecule and peptide-based inhibitors of the Plk1 PBD.
-
Defining A-Kinase Anchoring Protein (AKAP) Specificity for the Protein Kinase A Subunit RI (PKA-RI).
A-Kinase anchoring proteins (AKAPs) act as spatial and temporal regulators of protein kinase A (PKA) by localizing PKA along with multiple proteins into discrete signaling complexes. AKAPs interact with the PKA holoenzyme through an α-helix that docks into a groove formed on the dimerization/docking domain of PKA-R in an isoform-dependent fashion. ⋯ Phe, Trp and Leu were all found to maintain RI selectivity, whereas multiple intermediate-sized hydrophobic substitutions at this position either resulted in loss of isoform selectivity (Ile) or a reversal of selectivity (Val). As a limited number of RI-selective sequences are currently known, this study aids in our understanding of isoform selectivity and establishing parameters for discovering additional RI-selective AKAPs.
-
Pseudomonas aeruginosa uses N-acylated L-homoserine lactone signals and a triumvirate of LuxR-type receptor proteins--LasR, RhlR, and QscR--for quorum sensing (QS). Each of these receptors can contribute to QS activation or repression and, thereby, the control of myriad virulence phenotypes in this pathogen. LasR has traditionally been considered to be at the top of the QS receptor hierarchy in P. aeruginosa; however, recent reports suggest that RhlR plays a more prominent role in infection than originally predicted, in some circumstances superseding that of LasR. ⋯ Using E. coli reporter strains, we demonstrated that many of these compounds can selectively activate or inhibit RhlR instead of LasR and QscR. Moreover, several molecules maintain their activities in P. aeruginosa at concentrations analogous to native RhlR signal levels. These compounds represent useful chemical probes to study the role of RhlR in the complex QS circuitry of P. aeruginosa, its direct (and indirect) effects on virulence, and its overall merit as a target for anti-infective therapy.