The journal of headache and pain
-
Animal models have provided a growing body of information about the pathophysiology of headaches and novel therapeutic targets. In recent years, experiments in awake animals have gained attention as more relevant headache models. Pain can be assessed in animals using behavioral alterations, which includes sensory-discriminative, affective-emotional and cognitive aspects. ⋯ Cluster headache and tension type headache patients also exhibit a reversible cognitive dysfunction during the headache attacks. However, only a limited number of animal studies have investigated cognitive aspects of headache disorders, which remains a relatively unexplored aspect of these pathologies. Thus, the headache field has an excellent and growing selection of model systems that are likely to yield exciting advances in the future.
-
OnabotulinumtoxinA is effective in treating chronic migraine (CM), but there are limited data assessing how allodynia affects preventive treatment responses. This subanalysis of the 108-week, multicenter, open-label COMPEL Study assessed the efficacy and safety of onabotulinumtoxinA in people with CM with and without allodynia. ⋯ Results indicate that onabotulinumtoxinA is associated with reductions from baseline in multiple efficacy outcomes for up to 108 weeks whether or not allodynia is present. The allodynia group showed a smaller treatment response for reduction in headache days, but a similar or greater treatment response for improvement in other measures. No new safety concerns were identified.
-
Research in migraine points towards central-peripheral complexity with a widespread pattern of structures involved. Migraine-associated neck and shoulder muscle pain has clinically been conceptualized as myofascial trigger points (mTrPs). However, concepts remain controversial, and the identification of mTrPs is mostly restricted to manual palpation in clinical routine. This study investigates a more objective, quantitative assessment of mTrPs by means of magnetic resonance imaging (MRI) with T2 mapping. ⋯ Our approach enables the identification of mTrPs and their quantification in terms of T2 mapping even in the absence of qualitative signal alterations. Thus, it (1) might potentially challenge the current gold-standard method of physical examination of mTrPs, (2) could allow for more targeted and objectively verifiable interventions, and (3) could add valuable models to understand better central-peripheral mechanisms in migraine.
-
Observational Study
Pain-related avoidance and endurance behaviour in migraine: an observational study.
The role of avoidance and endurance behaviour is well established in chronic musculoskeletal pain, but less is known about its significance in migraine. ⋯ This indicates that improvement in headache frequency and disability can be achieved in the absence of changes in avoidance or endurance behaviour. However, because of its significant link to headache-related disability, avoidance behaviour (especially social avoidance) should be investigated as a potential additional target of migraine therapy.
-
The present study aimed to preliminary explore the abnormal neuromagnetic activation in female migraine patients between attacks using magnetoencephalography (MEG) and pattern reversed visual evoked magnetic fields (PR-VEFs). ⋯ The findings presented in the current study, suggested that interictal cortical activation following a visual stimulus was low in female migraine patients. The low pre-activation was detected in the visual cortex using VEF and MEG in both low and high-frequency band. Our results add to the existing evidence that cortical interictal excitability change may be relative to the pain-module mechanism in migraine brains. Thus, our data improved the apprehension of the cortical disorder of migraine in the high-frequency domain.