Journal of virology
-
Journal of virology · Mar 2006
A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge.
To determine whether intranasal inoculation with a paramyxovirus-vectored vaccine can induce protective immunity against Ebola virus (EV), recombinant human parainfluenza virus type 3 (HPIV3) was modified to express either the EV structural glycoprotein (GP) by itself (HPIV3/EboGP) or together with the EV nucleoprotein (NP) (HPIV3/EboGP-NP). Expression of EV GP by these recombinant viruses resulted in its efficient incorporation into virus particles and increased cytopathic effect in Vero cells. HPIV3/EboGP was 100-fold more efficiently neutralized by antibodies to EV than by antibodies to HPIV3. ⋯ When these animals were challenged with an intraperitoneal injection of 10(3) PFU of EV, there were no outward signs of disease, no viremia or detectable EV antigen in the blood, and no evidence of infection in the spleen, liver, and lungs. In contrast, all of the control animals died or developed severe EV disease following challenge. The highly effective immunity achieved with a single vaccine dose suggests that intranasal immunization with live vectored vaccines based on recombinant respiratory viruses may be an advantageous approach to inducing protective responses against severe systemic infections, such as those caused by hemorrhagic fever agents.
-
Journal of virology · Mar 2006
Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro.
The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. ⋯ Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1alpha, CXCL10/IP-10, CCL4/MIP-1beta, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury.
-
Journal of virology · Mar 2006
Development of a cAdVax-based bivalent ebola virus vaccine that induces immune responses against both the Sudan and Zaire species of Ebola virus.
Ebola virus (EBOV) causes a severe hemorrhagic fever for which there are currently no vaccines or effective treatments. While lethal human outbreaks have so far been restricted to sub-Saharan Africa, the potential exploitation of EBOV as a biological weapon cannot be ignored. Two species of EBOV, Sudan ebolavirus (SEBOV) and Zaire ebolavirus (ZEBOV), have been responsible for all of the deadly human outbreaks resulting from this virus. ⋯ Vaccination of mice with the bivalent cAdVaxE(GPs/z) vaccine led to efficient induction of EBOV-specific antibody and cell-mediated immune responses to both species of EBOV. In addition, the cAdVax technology demonstrated induction of a 100% protective immune response in mice, as all vaccinated C57BL/6 and BALB/c mice survived challenge with a lethal dose of ZEBOV (30,000 times the 50% lethal dose). This study demonstrates the potential efficacy of a bivalent EBOV vaccine based on a cAdVax vaccine vector design.