Journal of virology
-
Journal of virology · Mar 2015
Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses.
Current vaccines against influenza virus infection rely on the induction of neutralizing antibodies targeting the globular head of the viral hemagglutinin (HA). Protection against seasonal antigenic drift or sporadic pandemic outbreaks requires further vaccine development to induce cross-protective humoral responses, potentially to the more conserved HA stalk region. Here, we present a novel viral vaccine adjuvant comprised of two synthetic ligands for Toll-like receptor 4 (TLR4) and TLR7. 1Z105 is a substituted pyrimido[5,4-b]indole specific for the TLR4-MD2 complex, and 1V270 is a phospholipid-conjugated TLR7 agonist. Separately, 1Z105 induces rapid Th2-associated IgG1 responses, and 1V270 potently generates Th1 cellular immunity. 1Z105 and 1V270 in combination with recombinant HA from the A/Puerto Rico/8/1934 strain (rPR/8 HA) effectively induces rapid and sustained humoral immunity that is protective against lethal challenge with a homologous virus. More importantly, immunization with the combined adjuvant and rPR/8 HA, a commercially available split vaccine, or chimeric rHA antigens significantly improves protection against both heterologous and heterosubtypic challenge viruses. Heterosubtypic protection is associated with broadly reactive antibodies to HA stalk epitopes. Histological examination and cytokine profiling reveal that intramuscular (i.m.) administration of 1Z105 and 1V270 is less reactogenic than a squalene-based adjuvant, AddaVax. In summary, the combination of 1Z105 and 1V270 with a recombinant HA induces rapid, long-lasting, and balanced Th1- and Th2-type immunity; demonstrates efficacy in a variety of murine influenza virus vaccine models assaying homologous, heterologous, and heterosubtypic challenge viruses; and has an excellent safety profile. ⋯ Novel adjuvants are needed to enhance immunogenicity and increase the protective breadth of influenza virus vaccines to reduce the seasonal disease burden and ensure pandemic preparedness. We show here that the combination of synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus hemagglutinin, inducing rapid and sustained immunity that is protective against influenza viruses in homologous, heterologous, and heterosubtypic challenge models. Combining TLR4 and TLR7 ligands balances Th1- and Th2-type immune responses for long-lived cellular and neutralizing humoral immunity against the viral hemagglutinin. The combined adjuvant has an attractive safety profile and the potential to augment seasonal-vaccine breadth, contribute to a broadly neutralizing universal vaccine formulation, and improve response time in an emerging pandemic.
-
Journal of virology · Mar 2015
Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step.
Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. ⋯ Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1(+) LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1(+) LE/Lys, as a therapeutic target for SARS and EBOV.
-
Journal of virology · Mar 2015
Human coagulation factor X-adenovirus type 5 complexes poorly stimulate an innate immune response in human mononuclear phagocytes.
One of the first lines of host defense against many viruses in vertebrates is the innate immune system, which detects pathogen-associated molecular patterns (PAMPs) using pathogen recognition receptors (PRR). The dynamic interactions between pathogens and hosts create, in some cases, species-specific relationships. Recently, it was shown that murine factor X (mFX)-armored human adenovirus (HAd) stimulated a mFX-Toll-like receptor 4 (TLR4)-associated response in mouse macrophages in vitro and in vivo. Given the importance of studies using animals to better understand host-pathogen interactions, we asked if human FX (hFX)-armored HAd type 5 (HAd5) was capable of activating innate immune sensors in primary human mononuclear phagocytes. To this end, we assayed human mononuclear phagocytes for their ability to be stimulated by hFX-armored HAd5 via a TLR/NF-κB pathway, in particular, a TLR4 pathway. In our hands, we found no significant interaction, activation, or maturation of human mononuclear phagocytes caused by the presence of hFX-armored HAd5. ⋯ Animals, and mice in particular, are often used as informative and powerful surrogates for how pathogens interact with natural host systems. When possible, extended and targeted studies in the natural host can then be performed. Our data will help us understand the differences in preclinical testing in mice and clinical use in humans in order to improve treatment for HAd diseases and Ad vector effectiveness.
-
Journal of virology · Mar 2015
Reverse genetics system for severe fever with thrombocytopenia syndrome virus.
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that was first reported in China in 2009. Phylogenetic analysis of the viral genome showed that SFTS virus represents a new lineage within the Phlebovirus genus, distinct from the existing sandfly fever and Uukuniemi virus groups, in the family Bunyaviridae. SFTS disease is characterized by gastrointestinal symptoms, chills, joint pain, myalgia, thrombocytopenia, leukocytopenia, and some hemorrhagic manifestations with a case fatality rate of about 2 to 15%. Here we report the development of reverse genetics systems to study STFSV replication and pathogenesis. We developed and optimized functional T7 polymerase-based M- and S-segment minigenome assays, which revealed errors in the published terminal sequences of the S segment of the Hubei 29 strain of SFTSV. We then generated recombinant viruses from cloned cDNAs prepared to the antigenomic RNAs both of the minimally passaged virus (HB29) and of a cell culture-adapted strain designated HB29pp. The growth properties, pattern of viral protein synthesis, and subcellular localization of viral N and NSs proteins of wild-type HB29pp (wtHB29pp) and recombinant HB29pp viruses were indistinguishable. We also show that the viruses fail to shut off host cell polypeptide production. The robust reverse genetics system described will be a valuable tool for the design of therapeutics and the development of killed and attenuated vaccines against this important emerging pathogen. ⋯ SFTSV and related tick-borne phleboviruses such as Heartland virus are emerging viruses shown to cause severe disease in humans in the Far East and the United States, respectively. Study of these novel pathogens would be facilitated by technology to manipulate these viruses in a laboratory setting using reverse genetics. Here, we report the generation of infectious SFTSV from cDNA clones and demonstrate that the behavior of recombinant viruses is similar to that of the wild type. This advance will allow for further dissection of the roles of each of the viral proteins in the context of virus infection, as well as help in the development of antiviral drugs and protective vaccines.
-
Journal of virology · Mar 2015
Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology.
Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. ⋯ Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants. This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology. It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity. Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines.