Journal of virology
-
Journal of virology · Oct 2018
Engineered Oncolytic Poliovirus PVSRIPO Subverts MDA5-Dependent Innate Immune Responses in Cancer Cells.
We are pursuing cancer immunotherapy with a neuro-attenuated recombinant poliovirus, PVSRIPO. PVSRIPO is the live attenuated type 1 (Sabin) poliovirus vaccine carrying a heterologous internal ribosomal entry site (IRES) of human rhinovirus type 2 (HRV2). Intratumoral infusion of PVSRIPO is showing promise in the therapy of recurrent WHO grade IV malignant glioma (glioblastoma), a notoriously treatment-refractory cancer with dismal prognosis. ⋯ In addition to their role in the transition from innate to adaptive immunity, innate antiviral IFN responses may intercept the viral life cycle in cancerous cells, prevent viral cytopathogenicity, and restrict viral spread. This has been shown to reduce overall antitumor efficacy of several proposed oncolytic virus prototypes, presumably by limiting direct cell killing and the ensuing inflammatory profile within the infected tumor. In this report, we outline how an unusual recalcitrance of polioviruses toward innate antiviral responses permits viral cytotoxicity and propagation in neoplastic cells, combined with engaging active innate antiviral IFN responses.
-
Journal of virology · Oct 2018
Two Conserved Amino Acids within the NSs of Severe Fever with Thrombocytopenia Syndrome Phlebovirus Are Essential for Anti-interferon Activity.
The nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome phlebovirus (SFTSV) sequesters TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures to inhibit the phosphorylation and nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3) and subsequent interferon beta (IFN-β) production. Although the C-terminal region of SFTSV NSs (NSs66-249) has been linked to the formation of NSs-induced cytoplasmic structures and inhibition of host IFN-β responses, the role of the N-terminal region in antagonizing host antiviral responses remains to be defined. Here, we demonstrate that two conserved amino acids at positions 21 and 23 in the SFTSV and heartland virus (HRTV) NSs are essential for suppression of IRF3 phosphorylation and IFN-β mRNA expression following infection with SFTSV or recombinant influenza virus lacking the NS1 gene. ⋯ The 294-amino-acid nonstructural protein (NSs) of SFTSV associates with TANK-binding kinase 1 (TBK1), a key regulator of host innate antiviral immunity, to inhibit interferon beta (IFN-β) production and enhance viral replication. Here, we demonstrate that two conserved amino acids at positions 21 and 23 in the NSs of SFTSV and heartland virus, another tick-borne phlebovirus, are essential for association with TBK1 and suppression of IFN-β production. Our results provide important insight into the molecular mechanisms by which SFTSV NSs helps to counteract host antiviral strategies.