Journal of virology
-
Journal of virology · Jan 2017
Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants.
Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains by RBD-induced antibodies remains unknown. ⋯ We then constructed two RBDs mutated in multiple key residues in the receptor-binding motif (RBM) of RBD and demonstrated their strong cross-reactivity with anti-EMC-RBD antibodies. These RBD mutants with diminished DPP4 binding also led to virus attenuation, suggesting that immunoevasion after RBD immunization is accompanied by loss of viral fitness. Therefore, this study demonstrates that MERS-CoV RBD is an important vaccine target able to induce highly potent and broad-spectrum neutralizing antibodies against infection by divergent circulating human and camel MERS-CoV strains.
-
Journal of virology · Oct 2016
Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.
Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. ⋯ The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is crucial to evaluating vaccines and therapies and potentially understanding transmission. To address this, we demonstrated that ferrets are susceptible models to BDBV infection as well as to Ebola virus infection and that no virus adaptation is required. Moreover, these animals develop a disease that is similar to that seen in humans and nonhuman primates. We believe that this will improve the ability to study BDBV and provide a platform to test vaccines and therapeutics.
-
Journal of virology · Oct 2016
ABL kinase inhibitors are potent inhibitors of SARS-CoV and MERS-CoV fusion.
The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) cause significant morbidity and morality. There is currently no approved therapeutic for highly pathogenic coronaviruses, even as MERS-CoV is spreading throughout the Middle East. We previously screened a library of FDA-approved drugs for inhibitors of coronavirus replication in which we identified Abelson (Abl) kinase inhibitors, including the anticancer drug imatinib, as inhibitors of both SARS-CoV and MERS-CoV in vitro Here we show that the anti-CoV activity of imatinib occurs at the early stages of infection, after internalization and endosomal trafficking, by inhibiting fusion of the virions at the endosomal membrane. We specifically identified the imatinib target, Abelson tyrosine-protein kinase 2 (Abl2), as required for efficient SARS-CoV and MERS-CoV replication in vitro These data demonstrate that specific approved drugs can be characterized in vitro for their anticoronavirus activity and used to identify host proteins required for coronavirus replication. This type of study is an important step in the repurposing of approved drugs for treatment of emerging coronaviruses. ⋯ Both SARS-CoV and MERS-CoV are zoonotic infections, with bats as the primary source. The 2003 SARS-CoV outbreak began in Guangdong Province in China and spread to humans via civet cats and raccoon dogs in the wet markets before spreading to 37 countries. The virus caused 8,096 confirmed cases of SARS and 774 deaths (a case fatality rate of ∼10%). The MERS-CoV outbreak began in Saudi Arabia and has spread to 27 countries. MERS-CoV is believed to have emerged from bats and passed into humans via camels. The ongoing outbreak of MERS-CoV has resulted in 1,791 cases of MERS and 640 deaths (a case fatality rate of 36%). The emergence of SARS-CoV and MERS-CoV provides evidence that coronaviruses are currently spreading from zoonotic sources and can be highly pathogenic, causing serious morbidity and mortality in humans. Treatment of SARS-CoV and MERS-CoV infection is limited to providing supportive therapy consistent with any serious lung disease, as no specific drugs have been approved as therapeutics. Highly pathogenic coronaviruses are rare and appear to emerge and disappear within just a few years. Currently, MERS-CoV is still spreading, as new infections continue to be reported. The outbreaks of SARS-CoV and MERS-CoV and the continuing diagnosis of new MERS cases highlight the need for finding therapeutics for these diseases and potential future coronavirus outbreaks. Screening FDA-approved drugs streamlines the pipeline for this process, as these drugs have already been tested for safety in humans.
-
Journal of virology · Jul 2016
Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity.
Infection by adenovirus, a nonenveloped DNA virus, induces antiviral innate and adaptive immune responses. Studies of transformed human and murine cell lines using short hairpin RNA (shRNA) knockdown strategies identified cyclic guanine adenine synthase (cGAS) as a pattern recognition receptor (PRR) that contributes to the antiadenovirus response. Here we demonstrate how the cGAS/STING cascade influences the antiviral innate and adaptive immune responses in a murine knockout model. Using knockout bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMOs), we determined that cGAS and STING are essential to the induction of the antiadenovirus response in these antigen-presenting cells (APCs) in vitro We next determined how the cGAS/STING cascade impacts the antiviral response following systemic administration of a recombinant adenovirus type 5 vector (rAd5V). Infection of cGAS(-/-) and STING(-/-) mice results in a compromised early antiviral innate response compared to that in wild-type (WT) controls: significantly lower levels of beta interferon (IFN-β) secretion, low levels of proinflammatory chemokine induction, and reduced levels of antiviral transcript induction in hepatic tissue. At 24 h postinfection, levels of viral DNA and reporter gene expression in the liver were similar in all strains. At 28 days postinfection, clearance of infected hepatocytes in cGAS or STING knockout mice was comparable to that in WT C57BL/6 mice. Levels of neutralizing anti-Ad5V antibody were modestly reduced in infected cGAS mice. These data support a dominant role for the cGAS/STING cascade in the early innate antiviral inflammatory response to adenovirus vectors. However, loss of the cGAS/STING pathway did not affect viral clearance, and cGAS deficiency had a modest influence on the magnitude of the antiviral humoral immune response to adenovirus infections. ⋯ The detection of viral infection by host sentinel immune cells contributes to the activation of a complex and varied antiviral innate and adaptive immune response, which limits virus replication, spread, and susceptibility to infection. In this study, we have characterized how the cGAS/STING DNA-sensing cascade contributes to early detection of adenovirus infections. cGAS influences APC activation and early innate antiviral inflammatory immune responses, but adaptive immune pathways associated with virus clearance and anti-Ad antibody production were minimally influenced by the loss of the cGAS PRR signaling cascade.
-
Journal of virology · May 2016
ReviewZika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere.
Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and vaccines.