European journal of applied physiology
-
Eur. J. Appl. Physiol. · Aug 2011
Randomized Controlled TrialEffect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women.
Very high-intensity, low-volume, sprint interval training (SIT) increases muscle oxidative capacity and may increase maximal oxygen uptake ([Formula: see text]), but whether circulatory function is improved, and whether SIT is feasible in overweight/obese women is unknown. To examine the effects of SIT on [Formula: see text] and circulatory function in sedentary, overweight/obese women. Twenty-eight women with BMI > 25 were randomly assigned to SIT or control (CON) groups. ⋯ The increase in [Formula: see text] by SIT was significantly greater than by CON (12 vs. -1%). Changes by SIT and CON in HR(max) (-1 vs. -1%) were not significantly different. Four weeks of SIT improve circulatory function during submaximal exercise and increases [Formula: see text] in sedentary, overweight/obese women.
-
Eur. J. Appl. Physiol. · Aug 2011
Controlled Clinical TrialKinetics of skeletal muscle O2 delivery and utilization at the onset of heavy-intensity exercise in pulmonary arterial hypertension.
Impaired O(2) delivery relative to O(2) demands at the onset of exercise might influence the response profile of muscle fractional O(2) extraction (≅Δ[deoxy-Hb/Mb] by near-infrared spectroscopy) either by accelerating its rate of increase or creating an "overshoot" (OS) in patients with pulmonary arterial hypertension (PAH). We therefore assessed the kinetics of O(2) uptake [Formula: see text] Δ[deoxy-Hb/Mb] in the vastus lateralis, and heart rate (HR) at the onset of heavy-intensity exercise in 14 females with PAH (connective tissue disease, IPAH, portal hypertension, and acquired immunodeficiency syndrome) and 11 age- and gender-matched controls. Patients had slower [Formula: see text] and HR dynamics than controls (τ[Formula: see text] = 62.7 ± 15.2 s vs. 41.0 ± 13.8 s and t (1/2)-HR = 61.3 ± 16.6 s vs. 43.4 ± 8.8 s, respectively; p < 0.01). ⋯ Larger area under the OS and slower kinetics (MRT) of the "downward" component indicated greater O(2) delivery-to-utilization mismatch in OS(+) patients versus OS(+) controls (477.4 ± 330.0 vs. 78.1 ± 65.6 a.u. and 74.6 ± 18.8 vs. 46.0 ± 17.0 s, respectively; p < 0.05). Resting pulmonary vascular resistance was higher in OS(+) than OS(-) patients (23.1 ± 12.0 vs. 10.7 ± 4.0 Woods, respectively; p < 0.05). We conclude that microvascular O(2) delivery-to-utilization inequalities slowed the rate of adaptation of aerobic metabolism at the start of heavy-intensity exercise in women with PAH.
-
Eur. J. Appl. Physiol. · Aug 2011
Controlled Clinical TrialEffects of static contraction and cold stimulation on cardiovascular autonomic indices, trapezius blood flow and muscle activity in chronic neck-shoulder pain.
The aim of the present study was to investigate reactions in trapezius muscle blood flow (MBF), muscle activity, heart rate variability (HRV) and systemic blood pressure (BP) to autonomic tests in subjects with chronic neck-shoulder pain and healthy controls. Changes in muscle activity and blood flow due to stress and unfavourable muscle loads are known underlying factors of work-related muscle pain. Aberration of the autonomic nervous system (ANS) is considered a possible mechanism. ⋯ Locally, the pain group had attenuated trapezius MBF in response to HGT (Pain 122% Control 140%) with elevated trapezius EMG following HGT and during CPT. In conclusion, only HGT showed differences between groups in systemic BP and HRV and alterations in local trapezius MBF and EMG in the pain group. Findings support the hypothesis of ANS involvement at systemic and local levels in chronic neck-shoulder pain.
-
Eur. J. Appl. Physiol. · Aug 2011
Strong ion reserve: a viewpoint on acid base equilibria and buffering.
Evidence suggests that strong ions can exist reversibly bound to proteins in a pH-dependent manner and that they can be recruited into the biological solution, modulating its strong ion difference in a process that opposes the acid base disturbances imposed on the system. These recruitable strong ions represent the solution's 'strong ion reserve'. The physiologic [corrected] role of these protein-bound strong ions [corrected] in the buffering of acid base disorders is discussed.