European journal of applied physiology
-
Eur. J. Appl. Physiol. · Aug 2012
Randomized Controlled TrialVitamin D supplementation during exercise training does not alter inflammatory biomarkers in overweight and obese subjects.
The purpose of this study was to examine the effects of vitamin D supplementation on inflammatory biomarkers in overweight and obese adults participating in a progressive resistance exercise training program. Twenty-three (26.1 ± 4.7 years) overweight and obese (BMI 31.3 ± 3.2 kg/m2) adults were randomized into a double-blind vitamin D supplementation (Vit D 4,000 IU/day; female 5, male 5) or placebo (PL, female 7; male 6) intervention trial. Both groups performed 12 weeks (3 days/week) of progressive resistance exercise training (three sets of eight exercises) at 70-80% of one repetition maximum. ⋯ As expected, when PL and Vit D groups were combined, there was a significant correlation between percent body fat and CRP at baseline (r = 0.45, P = 0.04), and between serum 25OHD and CRP at 12 weeks (r = 0.49, P = 0.03). The PL group had a significant increase in 25 μg/ml LPS + polymixin B-stimulated TNFα production (P = 0.04), and both groups had a significant reduction in unstimulated TNFα production (P < 0.05) after the 12-week intervention. Vitamin D supplementation in healthy, overweight, and obese adults participating in a resistance training intervention did not augment exercise-induced changes in inflammatory biomarkers.
-
Eur. J. Appl. Physiol. · Aug 2012
Warm-up effects on muscle oxygenation, metabolism and sprint cycling performance.
To investigate the effects of warm-up intensity on all-out sprint cycling performance, muscle oxygenation and metabolism, 8 trained male cyclists/triathletes undertook a 30-s sprint cycling test preceded by moderate, heavy or severe warm up and 10-min recovery. Muscle oxygenation was measured by near-infrared spectroscopy, with deoxyhaemoglobin ([HHb]) during the sprint analysed with monoexponential models with time delay. Aerobic, anaerobic-glycolytic and phosphocreatine energy provision to the sprint were estimated from oxygen uptake and lactate production. ⋯ The [HHb] kinetics during the sprint were not different among conditions, although the time delay before [HHb] increased was shorter for severe versus moderate warm up (mod. 5.8 ± 0.6, heavy 5.6 ± 0.9, severe 5.2 ± 0.7 s, P < 0.05). The severe warm up was without effect on estimated aerobic metabolism, but increased estimated phosphocreatine hydrolysis, the latter unable to compensate for the reduction in estimated anaerobic-glycolytic metabolism. It appears that despite all warm ups equally increasing muscle oxygenation, and indicators of marginally faster oxygen utilisation at the start of exercise following a severe-intensity warm up, other energy sources may not be able to fully compensate for a reduced glycolytic rate in sprint exercise with potential detrimental effects on performance.
-
Eur. J. Appl. Physiol. · Aug 2012
Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training.
This study used transcranial magnetic stimulation to measure the corticospinal responses following 8 weeks of unilateral leg strength training. Eighteen healthy, non-strength trained participants (14 male, 4 female; 18-35 years of age) were matched for age, gender, and pre-training strength; and assigned to a training or control group. The trained group participated in unilateral horizontal leg press strength training, progressively overloaded and wave periodised, thrice per week for 8 weeks. ⋯ The trained leg showed an increase in strength of 21.2% (P = 0.001) and 29.0% (P = 0.007, compared to pre-testing) whilst the untrained contralateral leg showed 17.4% (P = 0.01) and 20.4% (P = 0.004, compared to pre-testing) increases in strength at 4 and 8 weeks, respectively. EMG and corticospinal excitability did not change; however, corticospinal inhibition was significantly reduced by 17.7 ms (P = 0.003) and 17.3 ms (P = 0.001) at 4 and 8 weeks, respectively, in the trained leg, and 25.1 ms (P = 0.001) and 20.8 ms (P = 0.001) at 4 and 8 weeks, respectively, in the contralateral untrained leg. This data support the theory of corticospinal adaptations underpinning cross-education gains in the lower limbs following unilateral strength training.