Journal of medical Internet research
-
J. Med. Internet Res. · Aug 2015
Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
The prevalence and value of patient-generated health text are increasing, but processing such text remains problematic. Although existing biomedical natural language processing (NLP) tools are appealing, most were developed to process clinician- or researcher-generated text, such as clinical notes or journal articles. In addition to being constructed for different types of text, other challenges of using existing NLP include constantly changing technologies, source vocabularies, and characteristics of text. These continuously evolving challenges warrant the need for applying low-cost systematic assessment. However, the primarily accepted evaluation method in NLP, manual annotation, requires tremendous effort and time. ⋯ We illustrate the challenges of processing patient-generated online health community text and characterize failures of NLP tools on this patient-generated health text, demonstrating the feasibility of our low-cost approach to automatically detect those failures. Our approach shows the potential for scalable and effective solutions to automatically assess the constantly evolving NLP tools and source vocabularies to process patient-generated text.
-
J. Med. Internet Res. · Aug 2015
Randomized Controlled Trial Pragmatic Clinical TrialApps for IMproving FITness and Increasing Physical Activity Among Young People: The AIMFIT Pragmatic Randomized Controlled Trial.
Given the global prevalence of insufficient physical activity (PA), effective interventions that attenuate age-related decline in PA levels are needed. Mobile phone interventions that positively affect health (mHealth) show promise; however, their impact on PA levels and fitness in young people is unclear and little is known about what makes a good mHealth app. ⋯ Although apps have the ability to increase reach at a low cost, our pragmatic approach using readily available commercial apps as a stand-alone instrument did not have a significant effect on fitness. However, interest in future use of PA apps is promising and highlights a potentially important role of these tools in a multifaceted approach to increase fitness, promote PA, and consequently reduce the adverse health outcomes associated with insufficient activity.
-
J. Med. Internet Res. · Aug 2015
Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning.
Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public's knowledge, attitudes, and beliefs surrounding e-cigarettes, and subsequently guide public health interventions. ⋯ Social media outlets like Twitter can uncover real-time snapshots of personal sentiment, knowledge, attitudes, and behavior that are not as accessible, at this scale, through any other offline platform. Using the vast data available through social media presents an opportunity for social science and public health methodologies to utilize computational methodologies to enhance and extend research and practice. This study was successful in automating a complex five-category manual content analysis of e-cigarette-related content on Twitter using machine learning techniques. The study details machine learning model specifications that provided the best accuracy for data related to e-cigarettes, as well as a replicable methodology to allow extension of these methods to additional topics.
-
J. Med. Internet Res. · Aug 2015
ReviewMobile Apps for Bipolar Disorder: A Systematic Review of Features and Content Quality.
With continued increases in smartphone ownership, researchers and clinicians are investigating the use of this technology to enhance the management of chronic illnesses such as bipolar disorder (BD). Smartphones can be used to deliver interventions and psychoeducation, supplement treatment, and enhance therapeutic reach in BD, as apps are cost-effective, accessible, anonymous, and convenient. While the evidence-based development of BD apps is in its infancy, there has been an explosion of publicly available apps. However, the opportunity for mHealth to assist in the self-management of BD is only feasible if apps are of appropriate quality. ⋯ In general, the content of currently available apps for BD is not in line with practice guidelines or established self-management principles. Apps also fail to provide important information to help users assess their quality, with most lacking source citation and a privacy policy. Therefore, both consumers and clinicians should exercise caution with app selection. While mHealth offers great opportunities for the development of quality evidence-based mobile interventions, new frameworks for mobile mental health research are needed to ensure the timely availability of evidence-based apps to the public.