Current drug targets
-
Since its initial start in December 2019 at Wuhan, China, the coronavirus disease 2019 (COVID-19) has been rapidly spreading and labelled as a pandemic by the World Health Organization. The rate of human to human transmission of COVID-19 is far higher than severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome coronavirus (MERS). With no drugs or vaccines approved for the treatment of the disease, physicians have been using pre-existing drugs to curb the disease. One potential anti-viral agent currently undergoing numerous clinical trials is remdesivir, a nucleotide analog that inhibits RNA-dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ⋯ Initially, remdesivir was granted an emergency use authorization (EUA) by the U.S. Food and Drug Administration for the treatment of COVID-19 with severe disease. But now, remdesivir has been granted for use under EUA to treat all hospitalized COVID-19 patients, irrespective of their severity of disease.
-
Current drug targets · Jan 2021
Small-molecule Antiviral Agents in Ongoing Clinical Trials for COVID-19.
The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 and has rapidly spread globally. As the confirmed number of cases has reached 83 million worldwide, the potential severity and the deadly complications of the disease requires urgent development of effective drugs for prevention and treatment. No proven effective treatment for this virus currently exists. ⋯ This review highlights the small-molecule repurposed antiviral agents that are currently under investigation in clinical trials for COVID-19. These include viral polymerase and protease inhibitors remdesivir, galidesivir, favipiravir, ribavirin, sofosbuvir, tenofovir/emtricitabine, baloxavir marboxil, EIDD-2801, lopinavir/ritonavir; virus-/host-directed viral entry and fusion inhibitors arbidol chloroquine/hydroxychloroquine, chlorpromazine, camostat mesylate, nafamostat mesylate, bromhexine and agents with diverse/unclear mechanism of actions as oseltamivir, triazavirin, ivermectin, nitazoxanide, niclosamide and BLD-2660. The published preclinical and clinical data to date on these drugs as well as the mechanisms of action are reviewed.
-
Current drug targets · Jan 2020
ReviewFacts and myths: Efficacies of repurposing chloroquine and hydroxychloroquine for the treatment of COVID-19.
The emergence of coronavirus disease 2019 (COVID-19) is caused by the 2019 novel coronavirus (2019-nCoV). The 2019-nCoV first broke out in Wuhan and subsequently spread worldwide owing to its extreme transmission efficiency. The fact that the COVID-19 cases and mortalities are reported globally and the WHO has declared this outbreak as the pandemic, the international health authorities have focused on rapid diagnosis and isolation of patients as well as search for therapies able to counter the disease severity. ⋯ Repurposing anti-malarial drugs and chloroquine (CQ)/ hydroxychloroquine (HCQ) have shown efficacy to inhibit most coronaviruses, including SARS-CoV-1 coronavirus. These CQ analogues have shown potential efficacy to inhibit 2019-nCoV in vitro that leads to focus several future clinical trials. This review discusses the possible effective roles and mechanisms of CQ analogues for interfering with the 2019-nCoV replication cycle and infection.
-
Current drug targets · Jan 2019
The Use of Naltrexone in Dermatology. Current Evidence and Future Directions.
Naltrexone is a competitive opioid receptor antagonist approved as supportive treatment in alcohol dependence and opioid addiction. At a dose of 50-100 mg daily, naltrexone is used off-label in dermatology for the treatment of trichotillomania and different types of pruritus. ⋯ These include diseases such as familial benign chronic pemphigus (Hailey-Hailey disease), dermatomyositis, systemic sclerosis, psoriasis and lichen planopilaris. Optimistic preliminary findings, low cost of therapy and good tolerance make naltrexone a promising alternative therapy or adjunct drug in dermatology.
-
Current drug targets · Jan 2019
ReviewApplication of Machine Learning Approaches for the Design and Study of Anticancer Drugs.
Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world's highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. ⋯ This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.