International immunopharmacology
-
Int. Immunopharmacol. · Sep 2015
Stearoyl lysophosphatidylcholine prevents lipopolysaccharide-induced extracellular release of high mobility group box-1 through AMP-activated protein kinase activation.
Previous studies have suggested that stearoyl lysophosphatidlycholine (LPC) protects against lethal experimental sepsis by inhibiting lipopolysaccharide (LPS)-induced extracellular release of high-mobility group box 1 (HMGB1). However, limited information exists on the mechanism by which stearoyl-LPC suppresses the extracellular release of HMGB1 in monocyte/macrophages stimulated with LPS. In this study, we found that stearoyl-LPC increased the phosphorylation of AMP-activated protein kinase (AMPK) in macrophages. ⋯ In addition, stearoyl-LPC-mediated suppression of HMGB1 release was abolished by siRNA-mediated knock-down of AMPKα1. Stearoyl-LPC increased the phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of activated AMPK, in mice lungs and decreased HMGB1 levels in bronchoalveolar lavage fluids in mice administered LPS. These results reveal a novel mechanism by which stearoyl-LPC regulates LPS-mediated cellular translocation of HMGB1.
-
Int. Immunopharmacol. · Sep 2015
Intranasal administration of CpG oligodeoxynucleotides reduces lower airway inflammation in a murine model of combined allergic rhinitis and asthma syndrome.
Given the relationship between allergic rhinitis (AR) and asthma, it can be hypothesized that reducing upper airway inflammation by targeting oligodeoxynucleotides with CpG motifs (CpG-ODN) specifically to the upper airway via intranasal administration in a small volume (10 μL) might improve lower airway (asthma) outcomes. The goal of this study was to investigate the therapeutic efficacy of 10 μL of intranasal versus intradermal administration of CpG-ODN in suppressing lower airway inflammation and methacholine-induced airway hyperreactivity (AHR) in mice subjected to ovalbumin (OVA)-induced combined allergic rhinitis and asthma syndrome (CARAS). OVA-sensitized BALB/c mice were subjected to upper-airway intranasal OVA exposure three times per week for 3 weeks. ⋯ In conclusion, intranasal treatment with CpG-ODN attenuated AR and significantly alleviated lower airway inflammation and AHR in the CARAS model. CpG-ODN therapy was more effective when administered intranasally than when administered intradermally. The current study supports the development of CpG-ODN nasal spray as a novel therapeutic agent for CARAS.