International immunopharmacology
-
Int. Immunopharmacol. · Feb 2017
Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells.
Mast cells (MCs) play a critical role in allergic inflammation. Although purinergic signalling is implicated in the regulation of various immune responses, its role in MC function is not fully understood. In this study, we investigated the regulatory role of purinergic signalling in MC degranulation, using mouse bone marrow-derived mast cells (BMMCs). ⋯ Moreover, BMMCs highly expressed ecto-nucleotidase CD39, but not ecto-5'-nucleotidase (CD73), and were therefore unable to directly convert ATP to adenosine. However, in the presence of CD73-expressing cells, ATP-mediated BMMC stimulation caused a marked degranulation in a CD73- and adenosine-dependent manner. These results demonstrate that purinergic signalling plays an important role in MC degranulation through at least three distinct mechanisms: (1) higher ATP concentrations directly induce degranulation via P2X7 receptor activation, (2) lower ATP concentrations augment FcεRI-mediated degranulation via P2X4 receptor activation, and (3) in an ecto-nucleotidase-enrich environment, ATP and the converted product adenosine induce a synergistic degranulation by P1 and P2 receptor co-activation.
-
Int. Immunopharmacol. · Feb 2017
Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one.
Suppressing cytokine responses has frequently been shown to have promising therapeutic effects for many chronic inflammatory and autoimmune diseases. However, the severe side effects associated with the long-term use of current treatments, such as allergic reactions and increased risk of stroke, have focused attention towards the targeting of intracellular signaling mechanisms, such as NF-κB, that regulate inflammation. We synthesized a series of non-natural aurone derivatives and investigated their ability to suppress pro-inflammatory signaling in human monocyte (THP-1) and murine macrophage-like (RAW 267.4) cell lines. ⋯ Inhibition of TNFα expression at the transcription level was also demonstrated in THP-1 by qRT-PCR. In addition to its effects on cytokine expression, aurone 1 pre-treatment decreased expression of iNOS, a bona fide NF-κB target gene and marker of macrophage M1 polarization, resulting in decreased NO production in RAW264.7 cells. Together, these data indicate that aurone 1 may have the potential to function as a pharmacological agent for the treatment of chronic inflammation disorders.