Intensive care medicine experimental
-
Intensive Care Med Exp · Sep 2020
The endogenous capacity to produce proinflammatory mediators by the ex vivo human perfused lung.
The ex vivo human perfused lung model has enabled optimizing donor lungs for transplantation and delineating mechanisms of lung injury. Perfusate and airspace biomarkers are a proxy of the lung response to experimental conditions. However, there is a lack of studies evaluating biomarker kinetics during perfusion and after exposure to stimuli. In this study, we analyzed the ex vivo-perfused lung response to three key perturbations: exposure to the perfusion circuit, exogenous fresh whole blood, and bacteria. ⋯ The ex vivo-perfused lung has a marked endogenous capacity to produce inflammatory mediators over the course of short-term perfusion that is not significantly influenced by donor lung characteristics or the presence of exogenous blood, and only minimally affected by the introduction of systemic bacteremia. The lack of association between biomarker change and donor lung cold ischemia time, final alveolar fluid clearance, and experimental percent weight gain suggests that the maintained ability of the human lung to produce biomarkers is not merely a marker of lung epithelial or endothelial injury, but may support the function of the lung as an immune cell reservoir.
-
Intensive Care Med Exp · Sep 2020
Diagnostic characteristics of 11 formulae for calculating corrected flow time as measured by a wearable Doppler patch.
Change of the corrected flow time (Ftc) is a surrogate for tracking stroke volume (SV) in the intensive care unit. Multiple Ftc equations have been proposed; many have not had their diagnostic characteristics for detecting SV change reported. Further, little is known about the inherent Ftc variability induced by the respiratory cycle. ⋯ Most of the 11 different equations used to calculate carotid artery Ftc from a wearable Doppler ultrasound patch had similar thresholds and abilities to detect SV change in healthy volunteers. Variation in Ftc induced by the respiratory cycle is important; measuring a clinically significant change in Ftc with statistical confidence requires a large sample of beats.
-
Intensive Care Med Exp · Sep 2020
A mock circulation loop to test extracorporeal CO2 elimination setups.
Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). ⋯ We demonstrate a simple and cost effective, yet powerful, "in-vitro" ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models.