Intensive care medicine experimental
-
Intensive Care Med Exp · May 2019
Adrecizumab, a non-neutralizing anti-adrenomedullin antibody, improves haemodynamics and attenuates myocardial oxidative stress in septic rats.
Sepsis still represents a major health issue, with persistent high morbidity and mortality rates. Cardiovascular dysfunction occurs frequently during sepsis. Adrenomedullin has been identified as a key mediator in vascular tone regulation. A non-neutralizing anti-adrenomedullin antibody, Adrecizumab, may improve haemodynamic dysfunction during caecal ligation and puncture-induced septic shock in a murine model. Our objective was to determine the role of Adrecizumab on haemodynamics in a rat model of sepsis. ⋯ In a rat model of sepsis, a single therapeutic injection of Adrecizumab rapidly restored haemodynamic parameters and blunted myocardial oxidative stress. Currently, a proof-of-concept and dose-finding phase II trial (Adrenoss-2) is ongoing in patients with septic shock and elevated concentrations of circulating bio-adrenomedullin.
-
Intensive Care Med Exp · May 2019
The physiological determinants of near-infrared spectroscopy-derived regional cerebral oxygenation in critically ill adults.
To maintain adequate oxygen delivery to tissue, resuscitation of critically ill patients is guided by assessing surrogate markers of perfusion. As there is no direct indicator of cerebral perfusion used in routine critical care, identifying an accurate strategy to monitor brain perfusion is paramount. Near-infrared spectroscopy (NIRS) is a non-invasive technique to quantify regional cerebral oxygenation (rSO2) that has been used for decades during cardiac surgery which has led to targeted algorithms to optimize rSO2 being developed. However, these targeted algorithms do not exist during critical care, as the physiological determinants of rSO2 during critical illness remain poorly understood. ⋯ Known and established physiological determinants of oxygen delivery accounted for a significant proportion of the rSO2 signal, which provides evidence that NIRS is a viable modality to assess cerebral oxygenation in critically ill adults. Further elucidation of the determinants of rSO2 has the potential to develop a NIRS-guided resuscitation algorithm during critical illness.
-
Intensive Care Med Exp · Apr 2019
Comparison of aerosol delivery across combinations of drug delivery interfaces with and without concurrent high-flow nasal therapy.
Current clinical practice during high-flow nasal therapy (HFNT) involves utilization of a nasal cannula to provide humidification, with a facemask placed over the cannula to deliver aerosol. Few studies have compared aerosol delivery across various delivery interfaces during HFNT. The objective of this study was to address this gap in the literature and evaluate aerosol delivery using two nebulizer types across different drug delivery interfaces, nasal cannula, facemask, and mouthpiece, during simulated adult HFNT. ⋯ This article will be of considerable benefit in enhancing the understanding of aerosol delivery during HFNT, an increasingly adopted therapeutic intervention by healthcare professionals.
-
Veno-venous extracorporeal carbon dioxide (CO2) removal (vv-ECCO2R) is increasingly being used in the setting of acute respiratory failure. Blood flow rates range in clinical practice from 200 mL/min to more than 1500 mL/min, and sweep gas flow rates range from less than 1 to more than 10 L/min. The present porcine model study was aimed at determining the impact of varying sweep gas flow rates on CO2 removal under different blood flow conditions and membrane lung surface areas. ⋯ The influence of sweep gas flow on the CO2 removal capacity of ECCO2R systems depends predominantly on blood flow rate and membrane lung surface area. In this model, considerable CO2 removal occurred only with the larger membrane lung surface of 0.8m2 and when blood flow rates of ≥ 900 mL/min were used.
-
Intensive Care Med Exp · Jan 2019
Elevated plasma glypicans are associated with organ failure in patients with infection.
Increased vascular permeability is a key feature in the pathophysiology of sepsis and the development of organ failure. Shedding of the endothelial glycocalyx is increasingly being recognized as an important pathophysiological mechanism but at present it is unclear if glypicans contribute to this response. We hypothesized that plasma levels of glypicans (GPC) are elevated in patients with sepsis. ⋯ We show that GPC 1, 3, and 4 are elevated in plasma of patients with sepsis and correlate with markers of disease severity, systemic inflammation, and glycocalyx damage.