American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
-
Renal transplantation is associated with alterations of tubular functions and of the renin-angiotensin-aldosterone system. The underlying cellular and molecular mechanisms are unclear. We used an allogeneic rat renal transplantation model of acute rejection with and without immunosuppression by cyclosporine A (CsA) and a syngeneic model as control. ⋯ Expression and function of the Na(+)-K(+)-ATPase, expression of the secretory K(+)-channel and of the mineralocorticoid receptor remained unchanged. Reduced ENaC function is likely due to decreased Sgk1- and increased Nedd4-2 mRNA expression leading to reduced ENaC expression in the membrane. These acute downregulations of ENaC and AQP2 may be triggered to reduce energy consumption in the distal nephron to protect the kidney immediately after transplantation.
-
Chemokine receptors preferentially expressed by Th1 cells and their IFN-gamma-inducible ligands predominate in experimental and clinical allograft rejection. Previous chemokine-related transplantation studies have focused on parenchymal and microvascular inflammation which are of importance in acute rejection, but are not necessarily relevant in immune-mediated injury of conduit arteries. We have recently described a model of progressive human T cell-mediated infiltration and injury of allogeneic coronary artery segments using immunodeficient mouse hosts. ⋯ Infiltrating T cells, confined to the adventitia and intima, expressed CXCR3 and CCR5, but were not recruited into the media despite production by vascular smooth muscle cells of IP-10, Mig, I-TAC, RANTES and MIP-1beta. Chemokine mRNA was detected primarily in vascular cells, although chemokine protein largely localized to infiltrating leukocytes which uniquely expressed their cognate receptors. These data explain the recruitment of IFN-gamma-secreting T cells to the vessel wall, and reinforce the suggestion that the arterial media may be a site of immunological privilege.