The international journal of cardiovascular imaging
-
Int J Cardiovasc Imaging · Jun 2002
Assessment of left ventricular diastolic function with Doppler tissue imaging: effects of preload and place of measurements.
Mitral inflow velocities are widely used for the evaluation of left ventricular (LV) diastolic function. However, they are closely affected by other factors such as preload. The purpose of this study was to evaluate the usefulness of tissue Doppler velocities obtained from the mitral annulus for the evaluation of ventricular relaxation in patients under different loading conditions. ⋯ Mitral annulus E' wave velocities and E'/A' ratios obtained from five different sides of the annulus also changed significantly (p < 0.001 for all); however, there was no change in the A' wave velocity (p > 0.05 for all) after hemodialysis. The decrease in E wave and E/A ratio in mitral inflow measurements and E' velocities and E'/A' ratios in tissue Doppler measurements were correlated with the amount of fluid extracted (for mitral inflow E wave, r = 0.392, p = 0.002 and E/A ratio, r = 0.280 and p = 0.027; for lateral side E', r = 0.329, p = 0.009 and E'/A' ratio, r = 0.286, p = 0.04; for septal side E', r = 0.376, p = 0.003 and E'/A' ratio, r = 0.297, p = 0.019; for anterior side E', r = 0.342, p = 0.007 and E'/A' ratio, r = 0.268, p = 0.035; for posterolateral side E', r = 0.423, p = 0.001 and E'/A' ratio, r = 0.343, p = 0.007; and for inferior side E', r = 0.326, p = 0.01 and E'/A' ratio, r = 0.278, p = 0.029). We conclude that mitral annular velocities obtained by tissue Doppler are preload dependent parameters for the evaluation of LV diastolic function.