Journal of biomedical informatics
-
Development and dissemination of public health (PH) guidance to healthcare organizations and the general public (e.g., businesses, schools, individuals) during emergencies like the COVID-19 pandemic is vital for policy, clinical, and public decision-making. Yet, the rapidly evolving nature of these events poses significant challenges for guidance development and dissemination strategies predicated on well-understood concepts and clearly defined access and distribution pathways. Taxonomies are an important but underutilized tool for guidance authoring, dissemination and updating in such dynamic scenarios. ⋯ The PH guidance taxonomy can support public health agencies by aligning guidance development with curation and indexing strategies; supporting targeted dissemination; increasing the speed of updates; and enhancing public-facing guidance repositories and information retrieval tools. Taxonomies are essential to support knowledge management activities during rapidly evolving scenarios such as disease outbreaks and natural disasters.
-
As the potential spread of COVID-19 sparked by imported cases from overseas will pose continuous challenges, it is essential to estimate the effects of control measures on reducing the importation risk of COVID-19. Our objective is to provide a framework of methodology for quantifying the combined effects of entry restrictions and travel quarantine on managing the importation risk of COVID-19 and other pandemics by leveraging different sets of parameters. ⋯ This framework has provided a valuable tool to parameterize the intensity of control measures, simulate both the case importation and local epidemic, and quantify the combined effects of entry restrictions and travel quarantine on managing the importation risk.
-
To annotate a corpus of randomized controlled trial (RCT) publications with the checklist items of CONSORT reporting guidelines and using the corpus to develop text mining methods for RCT appraisal. ⋯ Our annotated corpus, CONSORT-TM, contains more fine-grained information than earlier RCT corpora. Low frequency of some CONSORT items made it difficult to train effective text mining models to recognize them. For the items commonly reported, CONSORT-TM can serve as a testbed for text mining methods that assess RCT transparency, rigor, and reliability, and support methods for peer review and authoring assistance. Minor modifications to the annotation scheme and a larger corpus could facilitate improved text mining models. CONSORT-TM is publicly available at https://github.com/kilicogluh/CONSORT-TM.
-
In the National Library of Medicine funded ECLIPPSE Project (Employing Computational Linguistics to Improve Patient-Provider Secure Emails exchange), we attempted to create novel, valid, and scalable measures of both patients' health literacy (HL) and physicians' linguistic complexity by employing natural language processing (NLP) techniques and machine learning (ML). We applied these techniques to > 400,000 patients' and physicians' secure messages (SMs) exchanged via an electronic patient portal, developing and validating an automated patient literacy profile (LP) and physician complexity profile (CP). Herein, we describe the challenges faced and the solutions implemented during this innovative endeavor. ⋯ Our study represents a process evaluation of an innovative research initiative to harness "big linguistic data" to estimate patient HL and physician linguistic complexity. Any of the challenges we identified, if left unaddressed, would have either rendered impossible the effort to generate LPs and CPs, or invalidated analytic results related to the LPs and CPs. Investigators undertaking similar research in HL or using computational linguistic methods to assess patient-clinician exchange will face similar challenges and may find our solutions helpful when designing and executing their health communications research.
-
During the COVID-19 pandemic, health systems postponed non-essential medical procedures to accommodate surge of critically-ill patients. The long-term consequences of delaying procedures in response to COVID-19 remains unknown. We developed a high-throughput approach to understand the impact of delaying procedures on patient health outcomes using electronic health record (EHR) data. ⋯ Our approach enables health systems to identify medical procedures affected by the COVID-19 pandemic and evaluate the effect of delay, enabling them to communicate effectively with patients and prioritize rescheduling to minimize adverse patient outcomes.