Journal of biomedical informatics
-
Integration of clinical decision support services (CDSS) into electronic health records (EHRs) may be integral to widespread dissemination and use of clinical prediction rules in the emergency department (ED). However, the best way to design such services to maximize their usefulness in such a complex setting is poorly understood. We conducted a multi-site cross-sectional qualitative study whose aim was to describe the sociotechnical environment in the ED to inform the design of a CDSS intervention to implement the Pediatric Emergency Care Applied Research Network (PECARN) clinical prediction rules for children with minor blunt head trauma. ⋯ A total of 126 ED clinicians, information technology specialists, and administrators participated. We clustered data into 19 categories of sociotechnical factors through a process of thematic analysis and subsequently organized the categories into a sociotechnical matrix consisting of three high-level sociotechnical dimensions (workflow and communication, organizational factors, human factors) and three themes (interdisciplinary assessment processes, clinical practices related to prediction rules, EHR as a decision support tool). Design challenges that emerged from the analysis included the need to use structured data fields to support data capture and re-use while maintaining efficient care processes, supporting interdisciplinary communication, and facilitating family-clinician interaction for decision-making.
-
Clinical decision-support systems (CDSSs) comprise systems as diverse as sophisticated platforms to store and manage clinical data, tools to alert clinicians of problematic situations, or decision-making tools to assist clinicians. Irrespective of the kind of decision-support task CDSSs should be smoothly integrated within the clinical information system, interacting with other components, in particular with the electronic health record (EHR). However, despite decades of developments, most CDSSs lack interoperability features. ⋯ Second, archetypes can potentially deal with different EHR architectures, due to their deliberate independence of the reference model. Third, the archetype instances we obtain are valid instances of the underlying reference model, which would enable e.g. feeding back the EHR with data derived by abstraction mechanisms. Lastly, the medical and technical validity of archetype models would be assured, since in principle clinicians should be the main actors in their development.
-
Personalized medicine is to deliver the right drug to the right patient in the right dose. Pharmacogenomics (PGx) is to identify genetic variants that may affect drug efficacy and toxicity. The availability of a comprehensive and accurate PGx-specific drug-gene relationship knowledge base is important for personalized medicine. ⋯ By comparing to a dictionary-based approach with PGx-specific gene lexicon as input, we showed that the bootstrapping approach has better performance in terms of both precision and F1 (precision: 0.251 vs. 0.152, recall: 0.396 vs. 0.856 and F1: 0.292 vs. 0.254). By integrative analysis using a large drug adverse event database, we have shown that the extracted drug-gene pairs strongly correlate with drug adverse events. In conclusion, we developed a novel semi-supervised bootstrapping approach for effective PGx-specific drug-gene pair extraction from large number of MEDLINE articles with minimal human input.
-
Physiological processes in the human body can be predicted by mathematical models. Medical Decision Support Systems (MDSS) might exploit these predictions when optimizing therapy settings. In critically ill patients depending on mechanical ventilation, these predictions should also consider other organ systems of the human body. ⋯ Simulation error was found to be below measurement noise generally found in clinical data. Simulation time was reduced by factor 34 using one iteration and factor 13 using three iterations. Following the proposed calculation scheme moderately complex model combinations seem to be applicable for model based decision support.
-
Arden Syntax is a widely recognized standard for representing clinical and scientific knowledge in an executable format. It has a history that reaches back until 1989 and is currently maintained by the Health Level 7 (HL7) organization. We created a production-ready development environment, compiler, rule engine and application server for Arden Syntax. ⋯ A major challenge we encountered was the technical integration of our CDS systems in existing, heterogeneous health information systems. To address this issue, we are currently working on incorporating the HL7 standard GELLO, which provides a standardized interface and query language for accessing data in health information systems. We hope that these planned extensions of the Arden Syntax might eventually help in realizing the vision of a global, interoperable and shared library of clinical decision support knowledge.