Journal of biomedical informatics
-
Using Twitter, we aim to (1) define and quantify the prevalence and evolution of facets of social distancing during the COVID-19 pandemic in the US in a spatiotemporal context and (2) examine amplified tweets among social distancing facets. ⋯ The evolution of social distancing facets on Twitter reflects actual events and may signal potential disease hotspots. Our facets can also be used to understand public discourse on social distancing which may inform future public health measures.
-
The ever-increasing amount of biomedical data is enabling new large-scale studies, even though ad hoc computational solutions are required. The most recent Machine Learning (ML) and Artificial Intelligence (AI) techniques have been achieving outstanding performance and an important impact in clinical research, aiming at precision medicine, as well as improving healthcare workflows. However, the inherent heterogeneity and uncertainty in the healthcare information sources pose new compelling challenges for clinicians in their decision-making tasks. ⋯ With the goal of focusing on HCI and design aspects, the articles under consideration were grouped into four clusters. The advances in AI can effectively support the physicians' cognitive processes, which certainly play a central role in decision-making tasks because the human mental behavior cannot be completely emulated and captured; the human mind might solve a complex problem even without a statistically significant amount of data by relying upon domain knowledge. For this reason, technology must focus on interactive solutions for supporting the physicians effectively in their daily activities, by exploiting their unique knowledge and evidence-based reasoning, as well as improving the various aspects highlighted in this review.
-
The critical nature of patients in Intensive Care Units (ICUs) demands intensive monitoring of their vital signs as well as highly qualified professional assistance. The combination of these needs makes ICUs very expensive, which requires investment to be prioritized. Administrative issues emerge, and health institutions face dilemmas such as: "How many beds should an ICU provide to serve the population, at the lowest costs" and "Which is the most critical body information to monitor in an ICU?". Due to financial and ethical implications, these judgments require technical and precise knowledge. Decisions have usually relied on clinical scores, like the APACHE (Acute Physiology And Chronic Health Evaluation) and SOFA (Sequential Organ Failure Assessment) scores, which are imprecise and outdated. The popularization of machine learning techniques has shed some light on the topic as a way to renew score purposes. In 2012, the PhysioNet/Computing in Cardiology launched the Challenge - ICU Patients. This Challenge aimed to stimulate the development of techniques to predict mortality in ICUs. Based on biometric and physiological features collected from patients, the participants predicted the patient's death risk by using their classifiers. Several participants achieved results that were better than the results produced by the SOFA and the APACHE scores; the prediction levels were ≈54%, which is weak. ⋯ Our results indicated that our approach presented: (a) higher performance to predict death risks (+20%); (b) smaller dependence on the training set; and (c) lower costs for ICU monitoring (few features). Besides the better prediction power, our approach also demanded lower costs for implementation and a more extensive range of potential ICUs. Future studies should employ our proposal to investigate the possibility of including some physiological features that were not available for the 2012 PhysioNet Challenge.
-
The overwhelming number of medication alerts generated by clinical decision support systems (CDSS) has led to inappropriate alert overrides, which may lead to unintended patient harm. This review highlights the factors affecting the alert appropriateness of CDSS and barriers to the fit of CDSS alert with clinical workflow. A literature review was conducted to identify features and functions pertinent to CDSS alert appropriateness using the five rights of CDSS. ⋯ Evaluating the appropriateness of CDSS alert and its impact on workflow provided insights into how alerts can be designed and triggered effectively to support clinical workflow. The application of Lean methods and tools to analyse alert efficiencies in supporting workflow in this study provides an in-depth understanding of alert-workflow fit problems and their root cause, which is required for improving CDSS design. The application of the HAI model is recommended in the design of CDSS alerts to support various levels and stages of alert automations, namely, information acquisition and analysis, decision action and action implementation.
-
The domain of healthcare has always been flooded with a huge amount of complex data, coming in at a very fast-pace. A vast amount of data is generated in different sectors of healthcare industry: data from hospitals and healthcare providers, medical insurance, medical equipment, life sciences and medical research. With the advancement in technology, there is a huge potential for utilization of this data for transforming healthcare. ⋯ A systematic mapping study was conducted to identify and analyze research on big data analytics and artificial intelligence in healthcare, in which 2421 articles between 2013 and February 2019 were evaluated. The results of this study will help understand the needs in application of these technologies in healthcare by identifying the areas that require additional research. It will hence provide the researchers and industry experts with a base for future work.