Experimental biology and medicine
-
Exp. Biol. Med. (Maywood) · Oct 2011
High-frequency oscillatory ventilation attenuates oxidative lung injury in a rabbit model of acute lung injury.
Mechanical ventilation (MV) can induce lung oxidative stress, which plays an important role in pulmonary injury. This study compared protective conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation (HFOV) for oxygenation, oxidative stress, inflammatory and histopathological lung injury in a rabbit model of acute lung injury (ALI). Rabbits (n = 30) were ventilated at FiO(2) 1.0. ⋯ After four hours of ventilation, HFG showed better oxygenation (partial pressure of oxygen [PaO(2)] - CG: 465.9 ± 30.5 = HFG: 399.1 ± 98.2 > CMVG: 232.7 ± 104 mmHg, P < 0.05) and inflammatory responses (CMVG: 4.27 ± 1.50 > HFG: 0.33 ± 0.20 = CG: 0.16 ± 0.15; polymorphonuclear cells/bronchoalveolar lavage fluid/lung, P < 0.05), less histopathological injury score (CMVG: 5 [1-16] > HFG: 1 [0-5] > CG: 0 [0-3]; P < 0.05), and lower lung oxidative stress than CMVG (CG: 59.4 ± 4.52 = HFG: 69.0 ± 4.99 > CMVG: 47.6 ± 2.58% protection/g protein, P < 0.05). This study showed that HFOV had an important protective role in ALI. It improved oxygenation, reduced inflammatory process and histopathological damage, and attenuated oxidative lung injury compared with protective CMV under these experimental conditions considering the study limitations.