Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
ReviewLaboratory diagnosis of emerging human coronavirus infections - the state of the art.
The three unprecedented outbreaks of emerging human coronavirus (HCoV) infections at the beginning of the twenty-first century have highlighted the necessity for readily available, accurate and fast diagnostic testing methods. The laboratory diagnostic methods for human coronavirus infections have evolved substantially, with the development of novel assays as well as the availability of updated tests for emerging ones. Newer laboratory methods are fast, highly sensitive and specific, and are gradually replacing the conventional gold standards. ⋯ Alternatively, repeated testing can be used because over time, the likelihood of the SARS-CoV-2 being present in the nasopharynx increases. Several integrated, random-access, point-of-care molecular devices are currently under development for fast and accurate diagnosis of SARS-CoV-2 infections. These assays are simple, fast and safe and can be used in the local hospitals and clinics bearing the burden of identifying and treating patients.
-
The recently emerged novel coronavirus, "severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)", caused a highly contagious disease called coronavirus disease 2019 (COVID-19). The virus was first reported from Wuhan city in China in December, 2019, which in less than three months spread throughout the globe and was declared a global pandemic by the World Health Organization (WHO) on 11th of March, 2020. ⋯ Therefore, in this review we collected and summarized the currently available literature on the epidemiology, etiology, vulnerability, preparedness and economic impact of COVID-19 in Africa, which could be useful and provide necessary information on ongoing COVID-19 pandemics in the continent. We also briefly summarized the concomitance of the COVID-19 pandemic and global warming.
-
Emerg Microbes Infect · Dec 2020
LetterRheumotologitsts' view on the use of hydroxychloroquine to treat COVID-19.
The current pandemic coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) calls urgently for effective therapies. Anti-malarial medicine chloroquine (CQ) and particularly its chemical analogue hydroxychloroquine (HCQ) have been recommended as promising candidate therapeutics that are now under either compassionate off-label use or clinical trials for the treatment of COVID-19 patients. However, there are public concerns and disputes about both the safety and efficacy of CQ and HCQ for this new application. Given the fact that for decades HCQ has been approved as an immunomodulatory drug for the long term treatment of chronic rheumatic diseases, as experienced rheumatologists, we would like to share our thoughts in this regard and trigger a brainstorm among clinical care providers for exchanging their diverse opinions on this urgent topic.
-
Emerg Microbes Infect · Dec 2020
Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors.
Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread across many other countries. While the majority of patients were considered mild, critically ill patients involving respiratory failure and multiple organ dysfunction syndrome are not uncommon, which could result death. We hypothesized that cytokine storm is associated with severe outcome. ⋯ Our result indicated higher levels of cytokine storm is associated with more severe disease development. Among them, IL-6 and IL-10 can be used as predictors for fast diagnosis of patients with higher risk of disease deterioration. Given the high levels of cytokines induced by SARS-CoV-2, treatment to reduce inflammation-related lung damage is critical.
-
Emerg Microbes Infect · Dec 2020
Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2.
The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. ⋯ Furthermore, the developed RT-LAMP assay has been evaluated using specimens collected from COVID-19 patients that exhibited high agreement to the qRT-PCR. Our RT-LAMP assay is simple to perform, less expensive, time-efficient, and can be used in clinical laboratories for preliminary detection of SARS-CoV-2 in suspected patients. In addition to the high sensitivity and specificity, this isothermal amplification conjugated with a single-tube colorimetric detection method may contribute to the public health responses and disease control, especially in the areas with limited laboratory capacities.