Emerging microbes & infections
-
Emerg Microbes Infect · Dec 2020
ReviewZoonotic and reverse zoonotic events of SARS-CoV-2 and their impact on global health.
Coronaviruses (CoVs) are enveloped, positive sense, single-stranded RNA viruses. The viruses have adapted to infect a large number of animal species, ranging from bats to camels. At present, seven CoVs infect humans, of which Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus Disease 2019 (COVID-19) in humans. ⋯ This scenario is particularly alarming, since these animals could be potential reservoirs for secondary zoonotic infections. In this article, we highlight interspecies SARS-CoV-2 infections and focus on the reverse zoonotic potential of this virus. We also emphasize the importance of potential secondary zoonotic events and the One-Health and One-World approach to tackle such future pandemics.
-
Emerg Microbes Infect · Dec 2020
Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients.
The emerging COVID-19 caused by SARS-CoV-2 infection poses severe challenges to global public health. Serum antibody testing is becoming one of the critical methods for the diagnosis of COVID-19 patients. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and spike (S) protein after symptom onset in the intensive care unit (ICU) and non-ICU patients. 130 blood samples from 38 COVID-19 patients were collected. ⋯ The increase of S-IgG positively correlated with the decrease of C-reactive protein (CRP) in non-ICU patients. N and S specific IgM and IgG increased gradually after symptom onset and can be used for detection of SARS-CoV-2 infection. Analysis of the dynamics of S-IgG may help to predict prognosis.
-
Emerg Microbes Infect · Dec 2020
Clinical TrialDevelopment of an automatic integrated gene detection system for novel severe acute respiratory syndrome-related coronavirus (SARS-CoV2).
In December 2019, Wuhan, China suffered a serious outbreak of a novel coronavirus infectious disease (COVID) caused by novel severe acute respiratory syndrome-related coronavirus (SARS-CoV 2). To quickly identify the pathogen, we designed and screened primer sets, and established a sensitive and specific qRT-PCR assay for SARS-CoV 2; the lower limit of detection (LOD) was 14.8 (95% CI: 9.8-21) copies per reaction. We combined this qRT-PCR assay with an automatic integration system for nucleic acid extraction and amplification, thereby establishing an automatic integrated gene detection system (AIGS) for SARS-CoV 2. ⋯ The clinical sensitivity of the AIGS test was 97.62% (95% CI: 0.9320-0.9951) based on the commercial kit test result, and concordance analysis showed a high agreement in SARS-CoV-2 detection between the two assays, Pearson R was 0.9623 (95% CI: 0.9523-0.9703). The results indicated that this AIGS could be used for rapid detection of SARS-CoV 2. With the advantage of simple operation and less time consuming, AIGS could be suitable for SARS-CoV2 detection in primary medical institutions, thus would do a great help to improve detection efficiency and control the spread of COVID-19.
-
Emerg Microbes Infect · Dec 2020
Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection.
Following emergence in late 2019, SARS-CoV-2 rapidly became pandemic and is presently responsible for millions of infections and hundreds of thousands of deaths worldwide. There is currently no approved vaccine to halt the spread of SARS-CoV-2 and only very few treatment options are available to manage COVID-19 patients. For development of preclinical countermeasures, reliable and well-characterized small animal disease models will be of paramount importance. ⋯ Neither hamster age nor sex had any impact on the severity of disease or course of infection. Finally, prolonged viral persistence in interleukin 2 receptor gamma chain knockout hamsters revealed susceptibility of SARS-CoV-2 to adaptive immune control. In conclusion, the Syrian hamster is highly susceptible to SARS-CoV-2 making it a very suitable infection model for COVID-19 countermeasure development.
-
Emerg Microbes Infect · Dec 2020
Massive dissemination of a SARS-CoV-2 Spike Y839 variant in Portugal.
Genomic surveillance of SARS-CoV-2 was rapidly implemented in Portugal by the National Institute of Health in collaboration with a nationwide consortium of >50 hospitals/laboratories. Here, we track the geotemporal spread of a SARS-CoV-2 variant with a mutation (D839Y) in a potential host-interacting region involving the Spike fusion peptide, which is a target motif of anti-viral drugs that plays a key role in SARS-CoV-2 infectivity. The Spike Y839 variant was most likely imported from Italy in mid-late February and massively disseminated in Portugal during the early epidemic, becoming prevalent in the Northern and Central regions of Portugal where it represented 22% and 59% of the sampled genomes, respectively, by 30 April. ⋯ Our data supports population/epidemiological (founder) effects contributing to the Y839 variant superspread. The potential existence of selective advantage is also discussed, although experimental validation is required. Despite huge differences in genome sampling worldwide, SARS-CoV-2 Spike D839Y has been detected in 13 countries in four continents, supporting the need for close surveillance and functional assays of Spike variants.