Diabetologia
-
5'AMP-activated protein kinase (AMPK) and insulin stimulate glucose transport in heart and muscle. AMPK acts in an additive manner with insulin to increase glucose uptake, thereby suggesting that AMPK activation may be a useful strategy for ameliorating glucose uptake, especially in cases of insulin resistance. In order to characterise interactions between the insulin- and AMPK-signalling pathways, we investigated the effects of AMPK activation on insulin signalling in the rat heart in vivo. ⋯ Our data are indicative of differential effects of AMPK on the activation of components in the cardiac insulin-signalling pathway. These intriguing observations are critical for characterisation of the crosstalk between AMPK and insulin signalling.
-
Insulin resistance and type 2 diabetes risk in human subjects who were small-for-gestational-age (SGA) at birth may be a consequence of rapid early postnatal weight gain. ⋯ SGA infants showed a marked transition from lower pre-feed insulin and increased insulin sensitivity at birth to insulin resistance over the first 3 years of life. This transition was related to rapid postnatal weight gain, which could indicate a propensity to central fat deposition. The additional observation of reduced compensatory beta cell secretion underlines the need for long-term surveillance of glucose homeostasis in all SGA subjects, whether or not they show postnatal catch-up growth.
-
Gestational diabetes mellitus (GDM) and type 2 diabetes share a common pathophysiological background, including beta cell dysfunction and insulin resistance. In addition, women with GDM are at increased risk of developing type 2 diabetes later in life. Our aim was to investigate whether, like type 2 diabetes, GDM has a genetic predisposition by studying five common polymorphisms in four candidate genes that have previously been associated with type 2 diabetes. ⋯ The E23K polymorphism of KCNJ11 seems to predispose to GDM in Scandinavian women.