Diabetologia
-
Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. ⋯ Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.
-
Limited studies have compared the effect of prenatal or postnatal exposure to different severities of famine on the risk of developing diabetes. We aimed to measure the association between diabetes in adulthood and the exposure to different degrees of famine early in life (during the prenatal or postnatal period) during China's Great Famine (1959-1962). ⋯ Exposure to severe famine in the fetal or childhood period may predict a higher HbA1c and an increased diabetes risk in adulthood. These results from China indicate that both the prenatal and postnatal period may offer critical time windows for the determination of the risk of diabetes.