Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases
-
Infect. Genet. Evol. · Nov 2020
Comparative Study Observational StudyDifferences of inflammatory and non-inflammatory indicators in Coronavirus disease-19 (COVID-19) with different severity.
Background A variety of inflammatory and non-inflammatory indicators were increased in severe and critical Coronavirus disease-19 (COVID-19) and some of them were used to evaluate the severity and predict prognosis of community-acquired pneumonia. The aim of this study was to investigate the association of these indicators in COVID-19 with different severity. Methods Clinical data of 46 patients with severe COVID-19 and 31 patients with critical COVID-19 were collected. ⋯ Conclusions The severe and critical COVID-19 patients had significant differences in concentrations of serum cTnI, D-D, CRP, IL-6, PCT, neutrophil and lymphocyte counts. The increase of cTnI, CRP, IL-6, PCT, neutrophils and decrease of lymphocytes indicated severe condition. The initial IL-6 might be a good indicator of COVID-19 severity.
-
Infect. Genet. Evol. · Nov 2020
Quasi-species nature and differential gene expression of severe acute respiratory syndrome coronavirus 2 and phylogenetic analysis of a novel Iranian strain.
A novel coronavirus related to severe acute respiratory syndrome virus, (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. Despite the genetic mutations across the SARS-CoV-2 genome being recently investigated, its transcriptomic genetic polymorphisms at inter-host level and the viral gene expression level based on each Open Reading Frame (ORF) remains unclear. Using available High Throughput Sequencing (HTS) data and based on SARS-CoV-2 infected human transcriptomic data, this study presents a high-resolution map of SARS-CoV-2 single nucleotide polymorphism (SNP) hotspots in a viral population at inter-host level. ⋯ Ancestor analysis of the isolates from different locations including Iran suggest shared Chinese ancestry. These results propose the importance of potential inter-host level genetic variations to the evolution of SARS-COV-2, and the formation of viral quasi-species. The RNA modifications discovered in this study may cause amino acid sequence changes in polyprotein, spike protein, product of ORF8 and nucleocapsid (N) protein, suggesting further insights to understanding the functional impacts of mutations in the life cycle and pathogenicity of SARS-CoV-2.