Proteomics
-
Mammalian cells secrete two types of extracellular vesicles either constitutively or in a regulated manner: exosomes (50-100 nm in diameter) released from the intracellular compartment and ectosomes (also called microvesicles, 100-1000 nm in diameter) shed directly from the plasma membrane. Extracellular vesicles are bilayered proteolipids enriched with proteins, mRNAs, microRNAs, and lipids. In recent years, much data have been collected regarding the specific components of extracellular vesicles from various cell types and body fluids using proteomic, transcriptomic, and lipidomic methods. ⋯ These results provide valuable information on the molecular mechanisms involved in vesicular cargo-sorting and biogenesis. Furthermore, studies of these complex extracellular organelles have facilitated conceptual advancements in the field of intercellular communication under physiological and pathological conditions as well as for disease-specific biomarker discovery. This review focuses on the proteomic, transcriptomic, and lipidomic profiles of extracellular vesicles, and will briefly summarize recent advances in the biology, function, and diagnostic potential of vesicle-specific components.
-
Exosomes and microvesicles (MVs) are nanometer-sized, membranous vesicles secreted from many cell types into their surrounding extracellular space and into body fluids. These two classes of extracellular vesicles are regarded as a novel mechanism through which cancer cells, including virally infected cancer cells, regulate their micro-environment via the horizontal transfer of bioactive molecules: proteins, lipids, and nucleic acids (DNA, mRNA, micro-RNAs; oncogenic cargo hence often referred to as oncosomes). ⋯ This current review offers an overall perspective on the roles of exosomes and MVs in HNC biology, focusing on EBV-associated NPC and OSCC. We also highlight the importance of saliva as a proximal and easily accessible bio-fluid for HNC detection, and propose that salivary vesicles might serve as an alternative model in the discovery of novel HNC biomarkers.