IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Dec 2006
Very low-noise ENG amplifier system using CMOS technology.
In this paper, we describe the design and testing of a system for recording electroneurographic signals (ENG) from a multielectrode nerve cuff (MEC). This device, which is an extension of the conventional nerve signal recording cuff, enables ENG to be classified by action potential velocity. In addition to electrical measurements, we provide preliminary in vitro data obtained from frogs that demonstrate the validity of the technique for the first time. ⋯ The ten-channel system we describe was realized in a 0.8 microm CMOS technology and detailed measured results are presented. The overall gain is 10 000 and the total input-referred root mean square (rms) noise in a bandwidth 1 Hz-5 kHZ is 291 nV. The active area is 12 mm(2) and the power consumption is 24 mW from +/-2.5 V power supplies.