IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2006
Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. ⋯ We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 s for movement initiation and turning. We have also developed a realistic demonstration of our system for control of a moving map display (http://ti.arc.nasa.gov/).
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2006
BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
This paper describes the outcome of discussions held during the Third International BCI Meeting at a workshop charged with reviewing and evaluating the current state of and issues relevant to brain-computer interface (BCI) feature extraction and translation. The issues discussed include a taxonomy of methods and applications, time-frequency spatial analysis, optimization schemes, the role of insight in analysis, adaptation, and methods for quantifying BCI feedback.
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2006
Comparative StudyThe BCI competition. III: Validating alternative approaches to actual BCI problems.
A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. ⋯ BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2006
The Wadsworth BCI Research and Development Program: at home with BCI.
The ultimate goal of brain-computer interface (BCI) technology is to provide communication and control capacities to people with severe motor disabilities. BCI research at the Wadsworth Center focuses primarily on noninvasive, electroencephalography (EEG)-based BCI methods. We have shown that people, including those with severe motor disabilities, can learn to use sensorimotor rhythms (SMRs) to move a cursor rapidly and accurately in one or two dimensions. ⋯ We are now translating this laboratory-proven BCI technology into a system that can be used by severely disabled people in their homes with minimal ongoing technical oversight. To accomplish this, we have: improved our general-purpose BCI software (BCI2000); improved online adaptation and feature translation for SMR-based BCI operation; improved the accuracy and bandwidth of P300-based BCI operation; reduced the complexity of system hardware and software and begun to evaluate home system use in appropriate users. These developments have resulted in prototype systems for every day use in people's homes.
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2006
Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.
Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.