IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2009
ReviewTemporal lobe epilepsy: anatomical and effective connectivity.
While temporal lobe epilepsy (TLE) has been treatable with anti-seizure medications over the past century, there still remain a large percentage of patients whose seizures remain untreatable pharmacologically. To better understand and treat TLE, our laboratory uses several in vivo analytical techniques to estimate connectivity in epilepsy. This paper reviews two different connectivity-based approaches with an emphasis on application to the study of epilepsy. ⋯ These analyses are performed on data collected in vivo from a spontaneously seizing animal model of TLE. Future work in vivo on epilepsy will no doubt benefit from a fusion of these different techniques. We conclude by discussing the interesting possibilities, implications, and challenges that a unified analysis would present.
-
IEEE Trans Neural Syst Rehabil Eng · Jun 2009
A continuous wavelet transform and classification method for delirium motoric subtyping.
The usefulness of motor subtypes of delirium is unclear due to inconsistency in subtyping methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured over 24 h with a discrete accelerometer-based activity monitor. The continuous wavelet transform (CWT) with various mother wavelets were applied to accelerometry data from three randomly selected patients with DSM-IV delirium that were readily divided into hyperactive, hypoactive, and mixed motor subtypes. ⋯ The use of a classification system shows how delirium subtypes can be categorized in relation to overall motoric behavior. The classification system was also implemented to successfully define other patient motoric subtypes. Motor subtypes of delirium defined by observed ward behavior differ in electronically measured activity levels.
-
The potential benefits of functional electrically stimulated (FES) cycling for people with spinal cord injury (SCI) are limited by the power output (PO) attainable. To understand why PO and metabolic efficiency are low, it is helpful to distinguish the effect of the SCI from the effects of electrical stimulation. The purpose of this study was to determine the performance of electrically stimulated (ES) muscle under simpler conditions and in able-bodied people in order to answer two questions about the causes of the poor efficiency in FES cycling. ⋯ ES is less economic than voluntary exercise during isometric contractions, probably due to the greater activation of fast muscle fibres. However, during ES concentric contractions, efficiency is near to the expected values for the velocity chosen. Thus there are additional factors that affect the inefficiency observed during FES cycling.