IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Mar 2013
Visuomotor discordance during visually-guided hand movement in virtual reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects.
We investigated neural effects of visuomotor discordances during visually-guided finger movements. A functional magnetic resonance imaging (fMRI)-compatible data glove was used to actuate (in real-time) virtual hand models shown on a display in first person perspective. In Experiment 1, we manipulated virtual hand motion to simulate either hypometric or unintentional (actuation of a mismatched finger) feedback of sequential finger flexion in healthy subjects. ⋯ We observed increased activation of ipsilesional motor cortex in both hypometric and hypermetric feedback conditions. Our data indicate that manipulation of visual feedback of one's own hand movement may be used to facilitate activity in select brain networks. We suggest that these effects can be exploited in neurorehabilition to enhance the processes of brain reorganization after injury and, specifically, might be useful in aiding recovery of hand function in patients during virtual reality-based training.