IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Sep 2002
Comparative StudyImproving signal reliability for on-line joint angle estimation from nerve cuff recordings of muscle afferents.
Closed-loop functional electrical stimulation (FES) applications depend on sensory feedback, thus, it is important to continuously investigate new methods to obtain reliable feedback signals. The objective of the present paper was to examine the feasibility of using an artificial neural network (ANN) to predict joint angle from whole nerve cuff recordings of muscle afferent activity within a physiological range of motion. Furthermore, we estimated how small changes in joint angle that can be detected from the nerve cuff recordings. ⋯ On average the mean prediction errors were less than 2.0 degrees (a total excursion of 20 degrees) and we were able to predict joint angles from muscle afferent activity with accuracy close to the best-estimated angular resolution. The angular resolution was found to depend on the initial joint angle and the actual step size taken and we found that there was a low probability of detecting joint angle changes less than 1.5 degrees. We thus suggest that muscle afferent activity is applicable as feedback in real-time closed-loop control, when the motion speed is restricted and when the movement is limited to a portion of the joint's physiological range.
-
IEEE Trans Neural Syst Rehabil Eng · Sep 2002
Control of leg-powered paraplegic cycling using stimulation of the lumbo-sacral anterior spinal nerve roots.
We investigated leg-powered cycling in a recumbent tricycle for a paraplegic using functional electrical stimulation (FES) with the lumbo-sacral anterior root stimulator implant (LARSI). A female complete T9 paraplegic had a stimulator for the anterior L2 to S2 spinal roots (bilaterally) implanted in 1994. She was provided with equipment for daily FES cycling exercise at home. ⋯ With this system, she has cycled 1.2 km at a time on gently undulating road. We found that spinal root stimulation gives sufficient control over the muscles in the legs to produce a fluid cycling gait. We propose that root stimulation for leg cycling exercise may be a practicable and valuable function for paraplegics following spinal cord injury.
-
IEEE Trans Neural Syst Rehabil Eng · Dec 2001
Comparative StudyFinite element modeling of electromagnetic signal propagation in a phantom arm.
Improving the control of artificial arms remains a considerable challenge. It may be possible to graft remaining peripheral nerves in an amputated limb to spare muscles in or near the residual limb and use these nerve-muscle grafts as additional myoelectric control signals. This would allow simultaneous control of multiple, degrees of freedom (DOF) and could greatly improve the control of artificial limbs. ⋯ Simulations were then performed using muscle dielectric properties with static, complex, and full electromagnetic solvers. The results indicate that significant displacement currents can develop (> 50% of total current) and that the fall-off of surface signal power varies with how the signal source is modeled. Index Terms-Control, electromyography (EMG), finite element (FE), modeling, prosthesis.
-
IEEE Trans Neural Syst Rehabil Eng · Sep 2001
Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits.
The objective was to characterize nerve-cuff recordings of muscle afferents to joint rotation over a large part of the physiological joint range. This information is needed to develop control strategies for functional electrical stimulation (FES) systems using muscle afferent signals for sensory feedback. Five acute rabbit experiments were performed. ⋯ The steady-state sensitivity of both nerve responses increased with increasing joint flexion, whereas the dynamic sensitivity increased initially but then decreased. The results indicate that recordings of the muscle afferents may provide reliable information over only a part of the physiological joint range. Despite this limitation, muscle afferent activity may be useful for motion feedback if the movement to be controlled is within a narrow joint range such as postural sway.
-
A new highly reliable gait phase detection system, which can be used in gait analysis applications and to control the gait cycle of a neuroprosthesis for walking, is described. The system was designed to detect in real-time the following gait phases: stance, heel-off, swing, and heel-strike. The gait phase detection system employed a gyroscope to measure the angular velocity of the foot and three force sensitive resistors to assess the forces exerted by the foot on the shoe sole during walking. ⋯ Despite the significant variation in the individual walking styles the system achieved an overall detection reliability above 99% for both subject groups for the tasks involving walking on flat, irregular, and inclined surfaces. In the case of stair climbing and descending tasks the success rate of the system was above 99% for the able body subjects and above 96 % for the subjects with impaired gait. The experiments also showed that the gait phase detection system, unlike other similar devices, was insensitive to perturbations caused by nonwalking activities such as weight shifting between legs during standing, feet sliding, sitting down, and standing up.