IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
-
IEEE Trans Neural Syst Rehabil Eng · Jan 2015
Motor imagery learning induced changes in functional connectivity of the default mode network.
Numerous studies provide evidences that motor skill learning changes the activity of some brain regions during task as well as some resting networks during rest. However, it is still unclear how motor learning affects the resting-state default-mode network (DMN). Using functional magnetic resonance imaging, this study investigated the alteration of the DMN after motor skill learning with mental imagery practice. ⋯ For the experimental group, interregional connectivity, estimated by the graph theory method, between the medial temporal lobe, lateral temporal, and lateral parietal cortex within the DMN was increased after learning, whereas activity of the DMN network, estimated by the independent component analysis method, remained stable. Moreover, the experimental group showed significant improvement in motor performance after learning and a negative correlation between the alteration of the execution rate and changes in activity in the lateral parietal cortex. These results indicate that the DMN could be sculpted by motor learning in a manner of altering interregional connectivity and may imply that the DMN plays a role in improving behavioral performance.
-
IEEE Trans Neural Syst Rehabil Eng · Sep 2014
Enhancement of bilateral cortical somatosensory evoked potentials to intact forelimb stimulation following thoracic contusion spinal cord injury in rats.
The adult central nervous system is capable of significant reorganization and adaptation following neurotrauma. After a thoracic contusive spinal cord injury (SCI) neuropathways that innervate the cord below the epicenter of injury are damaged, with minimal prospects for functional recovery. In contrast, pathways above the site of injury remain intact and may undergo adaptive changes in response to injury. ⋯ SSEPs recorded from the hindlimb sensory cortex upon ipsilesional stimulation were 33.9% (CI 14.3%, 53.4%; c(2) = 11.6; dof = 1; p = 0.0007) greater than contralesional stimulation. Therefore, these results demonstrate the ability of SSEPs to detect significant enhancements in the activation of forelimb sensory pathways following both midline and unilateral contusive SCI at T8. Reorganization of forelimb pathways may occur after thoracic SCI, which SSEPs can monitor to aid the development of future therapies.
-
IEEE Trans Neural Syst Rehabil Eng · Mar 2014
Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia.
Combining electrophysiological and hemodynamic features is a novel approach for improving current performance of brain switches based on sensorimotor rhythms (SMR). This study was conducted with a dual purpose: to test the feasibility of using a combined electroencephalogram/functional near-infrared spectroscopy (EEG-fNIRS) SMR-based brain switch in patients with tetraplegia, and to examine the performance difference between motor imagery and motor attempt for this user group. ⋯ For the control group, rates of 87% and 79% were obtained, respectively, where the "attempted movement" condition was replaced with "actual movement." A combined EEG-fNIRS system might be especially beneficial for users who lack sufficient control of current EEG-based brain switches. The average classification performance in the patient group for attempted movement was significantly higher than for imagined movement using the EEG-only as well as the combined classifier, arguing for the case of a paradigm shift in current brain switch research.
-
IEEE Trans Neural Syst Rehabil Eng · Mar 2014
Improving cochlear implant properties through conductive hydrogel coatings.
Conductive hydrogel (CH) coatings for biomedical electrodes have shown considerable promise in improving electrode mechanical and charge transfer properties. While they have desirable properties as a bulk material, there is limited understanding of how these properties translate to a microelectrode array. This study evaluated the performance of CH coatings applied to Nucleus Contour Advance cochlear electrode arrays. ⋯ Testing the coating in a model human scala tympani confirmed that adequate contact was maintained across the lateral wall. CH coatings are a viable, stable coating for improving electrical properties of the platinum arrays while imparting a softer material interface to reduce mechanical mismatch. Ultimately, these coatings may act to minimize scar tissue formation and fluid accumulation around electrodes and thus improve the electrical performance of neural implants.
-
IEEE Trans Neural Syst Rehabil Eng · Mar 2013
Visuomotor discordance during visually-guided hand movement in virtual reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects.
We investigated neural effects of visuomotor discordances during visually-guided finger movements. A functional magnetic resonance imaging (fMRI)-compatible data glove was used to actuate (in real-time) virtual hand models shown on a display in first person perspective. In Experiment 1, we manipulated virtual hand motion to simulate either hypometric or unintentional (actuation of a mismatched finger) feedback of sequential finger flexion in healthy subjects. ⋯ We observed increased activation of ipsilesional motor cortex in both hypometric and hypermetric feedback conditions. Our data indicate that manipulation of visual feedback of one's own hand movement may be used to facilitate activity in select brain networks. We suggest that these effects can be exploited in neurorehabilition to enhance the processes of brain reorganization after injury and, specifically, might be useful in aiding recovery of hand function in patients during virtual reality-based training.