Best practice & research. Clinical anaesthesiology
-
Analgesia (pain relief) amnesia (loss of memory) and immobilisation are the three major components of anaesthesia. The perception of pain, and therefore, the need for analgesia, is individual, and the monitoring of analgesia is indirect and, in essence, of the moment. Under general anaesthesia, analgesia is continually influenced by external stimuli and the administration of analgesic drugs, and cannot be really separated from anaesthesia: the interaction between analgesia and anaesthesia is inescapable. ⋯ For the past few years, automated electroencephalographic analysis has been of great interest in monitoring anaesthesia and could be useful in adapting the peroperative administration of opioids. A range of information collected from the electroencephalogram, haemodynamic readings and pulse plethysmography might be necessary for monitoring the level of nociception during anaesthesia. Information theory, multimodal monitoring, and signal processing and integration are the basis of future monitoring.
-
This chapter will focus on the two auditory evoked potentials (AEP) most commonly used to assess the effects of general anesthetics on the brain, the auditory middle latency response (AMLR) and the 40 Hz auditory steady-state response (40 Hz-ASSR). We will review their physiological basis, the recording methodology, the effects of general anesthetics, their ability to track changes in level of consciousness and their clinical applications. Because of space constraints, this review will be limited to human studies.
-
Best Pract Res Clin Anaesthesiol · Mar 2006
ReviewConcepts of EEG processing: from power spectrum to bispectrum, fractals, entropies and all that.
Over the past two decades, methods of processing the EEG for monitoring anaesthesia have greatly expanded. Whereas power spectral analysis was once the most important tool for extracting EEG monitoring variables, higher-order spectra, wavelet decomposition and especially methods used in the analysis of complex dynamical systems such as non-linear dissipative systems are nowadays attracting much attention. This chapter reviews some of these methods in brief. However, a comparison of some of the newer approaches with the more traditional ones with respect to clinical end-points by association measures and to the signal-to-noise ratio raises some doubt over whether the newer EEG-processing techniques really do better than the more traditional ones.
-
Best Pract Res Clin Anaesthesiol · Mar 2006
ReviewSpecial cases: ketamine, nitrous oxide and xenon.
Most general anaesthetic agents produce anaesthesia by increasing the activity of inhibitory gamma-aminobutyric acid type A receptors. The effects of ketamine, xenon and nitrous oxide on these receptors are, however, negligible. These anaesthetic agents potently inhibit excitatory N-methyl-D-aspartate receptors. ⋯ However, xenon decreases the bispectral index in a concentration-dependent manner. Similarly, ketamine and nitrous oxide do not suppress the mid-latency auditory evoked potential whereas xenon does. Thus, anaesthetic depth monitors fail to describe consciousness accurately when ketamine and nitrous oxide are used.
-
Closed-loop systems are able to make their own decisions and to try to reach and maintain a preset target. As a result, they might help the anaesthetist to optimise the titration of drug administration without any overshoot, controlling physiological functions and guiding monitoring variables. Thanks to the development of fast computer technology and more reliable pharmacological effect measures, the study of automation in anaesthesia has regained popularity. ⋯ Until now, most of these systems have had to be under development. The challenge is now fully to establish the safety, efficacy, reliability and utility of closed-loop anaesthesia so that it can be adopted in the clinical setting. Besides, their role in optimising the controlled variables and control models, these systems have to be tested in extreme circumstances in order to test their robustness.