Best practice & research. Clinical anaesthesiology
-
Best Pract Res Clin Anaesthesiol · Dec 2014
ReviewImpact of hemodynamic monitoring on clinical outcomes.
In recent years, there has been a tremendous growth in available hemodynamic monitoring devices to support clinical decision-making in the operating room and intensive care unit. In addition to the "tried and true" heart rate and blood pressure monitors, there are several newer applications of existing technologies including arterial waveform analysis, intraoperative and bedside critical care echocardiography, esophageal Doppler, and tissue oximetry, among others. ⋯ While these new technologies offer promising advances in intraoperative and critical care, they are often quite costly and many devices lack strong evidence for widespread adoption into clinical practice. In this review, we highlight the current data on clinical outcomes with the use of available hemodynamic monitoring devices.
-
Blood pressure is overwhelmingly the most commonly measured parameter for the assessment of haemodynamic stability. In clinical routine in the operating theatre and in the intensive care unit, blood pressure measurements are usually obtained intermittently and non-invasively using oscillometry (upper-arm cuff method) or continuously and invasively with an arterial catheter. However, both the oscillometric method and arterial catheter-derived blood pressure measurements have potential limitations. ⋯ In the recent years, technologies for continuous non-invasive blood pressure recording such as the volume clamp method or radial artery applanation tonometry have been developed and validated. The question in which patient groups and clinical settings these technologies should be applied to improve patient safety or outcome has not been definitively answered. In critically ill patients and high-risk surgery patients, further improvement of these technologies is needed before they can be recommended for routine clinical use.
-
It is often unclear whether or not a patient's stroke volume will increase following a fluid bolus. Volume responsiveness is defined by an increase in stroke volume following a fluid bolus. ⋯ However, lung-protective ventilation is increasingly being used to avoid the adverse outcomes of higher tidal volume ventilation, and pulse pressure and stroke volume variation do not effectively predict volume responsiveness in the setting of lung-protective ventilation without using special techniques. Dynamic preload assessment is more effective at determining whether a patient will be fluid responsive than static measures of preload, but further studies are needed to more conclusively show that outcomes are improved with this approach to fluid management.
-
Best Pract Res Clin Anaesthesiol · Dec 2014
ReviewOesophageal Doppler cardiac output monitoring: a longstanding tool with evolving indications and applications.
Much work has been done over the years to assess cardiac output and better grasp haemodynamic profiles of patients in critical care and during major surgery. Pulmonary artery catheterization has long been considered as the standard of care, especially in critical care environments, however this dogma has been challenged over the last 10-15 years. This has led to a greater focus on alternate, lesser invasive technologies. ⋯ The science underpinning Doppler shift assessment of velocity stretches back over 100 years, whereas the clinical applicability, and specifically clinical outcomes improvement can be attributed to the last 20 years. Oesophageal Doppler monitoring (ODM), and its associated protocol-guided fluid administration, has been shown to reduce complications, length of stay, and overall healthcare cost when incorporated into perioperative fluid management algorithms. However, more recent advances in enhanced recovery after surgery programs have led to similar improvements, leading the clinician to consider the role of Oesophageal Doppler Monitor to be more focused in high-risk surgery and/or the high-risk patient.
-
Best Pract Res Clin Anaesthesiol · Dec 2014
ReviewHemodynamic monitoring devices: putting it all together.
Perioperative hemodynamic optimization of the high-risk surgical patient is associated with reduced postoperative morbidity and mortality. The hemodynamic parameters to be optimized (using goal-directed algorithms) encompass preload, contractility, afterload, volume responsiveness, and end-organ perfusion. Current hemodynamic monitors facilitate multi-modal monitoring of these macro-hemodynamic targets. This review focuses on the variety of invasive, minimally invasive, and noninvasive hemodynamic monitors available to the clinician.