Frontiers in endocrinology
-
Front Endocrinol (Lausanne) · Jan 2013
Selective use of peri-operative steroids in pituitary tumor surgery: escape from dogma.
Traditional neurosurgical practice calls for administration of peri-operative stress-dose steroids for sellar-suprasellar masses undergoing operative treatment. This practice is considered critical to prevent peri-operative complications associated with hypoadrenalism, such as hypotension and circulatory collapse. However, stress-dose steroids complicate the management of these patients. It has been our routine practice to use stress steroids during surgery only if the patient has clinical or biochemical evidence of hypocortisolism pre-operatively. We wanted to be certain that this practice was safe. ⋯ Our experience demonstrates that selective use of corticosteroid replacement is safe; it simplifies the management of the patients, and has advantages over empiric "dogmatic" steroid coverage.
-
Front Endocrinol (Lausanne) · Jan 2013
ReviewEffects of an Early Experience Involving Training in a T-Maze Under either Denial or Receipt of Expected Reward through Maternal Contact.
The mother is the most salient stimulus for the developing pups and a number of early experience models employ manipulation of the mother-infant interaction. We have developed a new model which in addition to changes in maternal behavior includes a learning component on the part of the pups. More specifically, pups were trained in a T-maze and either received (RER rats) or were denied (DER) the reward of maternal contact, during postnatal days 10-13. ⋯ On the other hand, the DER experience leads to activation of the hippocampus, prefrontal cortex, and amygdala in the pups. In adulthood, male DER animals exhibit better mnemonic abilities in the Morris water maze and higher activation of the hippocampus, while they have decreased brain serotonergic activity, exhibit a depressive-like phenotype and proactive aggressive behavior in the resident-intruder test. While male RER animals assume a reactive coping style in this test, and showed increased freezing during both contextual and cued memory recall following fear conditioning.
-
Front Endocrinol (Lausanne) · Jan 2013
ReviewAfferent neuronal control of type-I gonadotropin releasing hormone neurons in the human.
Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH) synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. ⋯ This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic, and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B (NKB) play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes, and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and NKB systems.
-
For many years, adipose tissue was considered as an inert energy storage organ that accumulates and stores triacylglycerols during energy excess and releases fatty acids in times of systemic energy need. However, over the last two decades adipose tissue depots have been established as highly active endocrine and metabolically important organs that modulate energy expenditure and glucose homeostasis. In rodents, brown adipose tissue plays an essential role in non-shivering thermogenesis and in energy dissipation that can serve to protect against diet-induced obesity. ⋯ In obese humans and rodent models, the expression of pro-inflammatory adipokines is enhanced to induce insulin resistance. Collectively, these findings have suggested that obesity-induced insulin resistance may result, at least in part, from an imbalance in the expression of pro- and anti-inflammatory adipokines. Thus we will review the recent progress regarding the physiological and molecular functions of adipokines in the obesity-induced inflammation and insulin resistance with perspectives on future directions.
-
Front Endocrinol (Lausanne) · Jan 2013
Stress responsiveness of the hypothalamic-pituitary-adrenal axis: age-related features of the vasopressinergic regulation.
The hypothalamic-pituitary-adrenal (HPA) axis plays a key role in adaptation to environmental stresses. Parvicellular neurons of the hypothalamic paraventricular nucleus secrete corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP) into pituitary portal system; CRH and AVP stimulate adrenocorticotropic hormone (ACTH) release through specific G-protein-coupled membrane receptors on pituitary corticotrophs, CRHR1 for CRH and V1b for AVP; the adrenal gland cortex secretes glucocorticoids in response to ACTH. The glucocorticoids activate specific receptors in brain and peripheral tissues thereby triggering the necessary metabolic, immune, neuromodulatory, and behavioral changes to resist stress. ⋯ Aging associated with increased variability in several parameters of HPA function including basal state, responsiveness to stressors, and special testing. Reports on the possible role of the AVP/V1b receptor system in the increase of HPA axis hyperactivity with aging are contradictory and requires further research. Many contradictory results may be due to age and species differences in the HPA function of rodents and primates.