Journal of nanobiotechnology
-
J Nanobiotechnology · Jan 2021
Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein.
The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single‑chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS-CoV-2 spike interaction with ACE2 protein were developed. ⋯ The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential therapeutic agent for the treatment of COVID-19.
-
J Nanobiotechnology · Sep 2020
ReviewHow can nanotechnology help to combat COVID-19? Opportunities and urgent need.
Incidents of viral outbreaks have increased at an alarming rate over the past decades. The most recent human coronavirus known as COVID-19 (SARS-CoV-2) has already spread around the world and shown R0 values from 2.2 to 2.68. ⋯ In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis and treatment of COVID-19 and other viral infections. In this review, we discuss the use of nanotechnology for COVID-19 virus management by the development of nano-based materials, such as disinfectants, personal protective equipment, diagnostic systems and nanocarrier systems, for treatments and vaccine development, as well as the challenges and drawbacks that need addressing.
-
J Nanobiotechnology · Jan 2017
Antioxidant capacities of the selenium nanoparticles stabilized by chitosan.
Selenium (Se) as one of the essential trace elements for human plays an important role in the oxidation reduction system. But the high toxicity of Se limits its application. In this case, the element Se with zero oxidation state (Se0) has captured our attention because of its low toxicity and excellent bioavailability. However, Se0 is very unstable and easily changes into the inactive form. By now many efforts have been done to protect its stability. And this work was conducted to explore the antioxidant capacities of the stable Se0 nanoparticles (SeNPs) stabilized using chitosan (CS) with different molecular weights (Mws) (CS-SeNPs). ⋯ Our work could demonstrate the CS-SeNPs hold a lower toxicity and a 30-day storage process could enhance the antioxidant capacities. All CS-SeNPs could penetrate the tissues and perform their antioxidant effects, especially the CS(l)-SeNPs in mice models. What's more, the antioxidant capacities of CS-SeNPs were more evident in viscera than in skin.
-
J Nanobiotechnology · Jun 2016
Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
Engineering microorganisms in order to improve the metabolite flux needs a detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer (FRET) based genetically encoded nanosensors represent a promising tool for measuring the metabolite levels and corresponding rate changes in live cells. Here, we report the development of a series of FRET based genetically encoded nanosensor for real time measurement of lysine at cellular level, as the improvement of microbial strains for the production of L-lysine is of major interest in industrial biotechnology. ⋯ The developed novel lysine fluorescence resonance energy transfer sensors can be used for in vivo monitoring of lysine levels in prokaryotes as well as eukaryotes. The potential of these sensors is that they can be used as reporter tools in the development of metabolically engineered microbial strains or for real-time monitoring of intracellular lysine during fermentation.
-
J Nanobiotechnology · Oct 2015
Cerium oxide nanoparticles attenuate acute kidney injury induced by intra-abdominal infection in Sprague-Dawley rats.
Intra-abdominal infection or peritonitis is a cause for great concern due to high mortality rates. The prognosis of severe intra-abdominal infection is significantly diminished in the presence of acute kidney injury (AKI) which is often characterized by renal tubular cell death that can lead to renal failure. The purpose of the current study is to examine the therapeutic efficacy of cerium oxide (CeO2) nanoparticles for the treatment of peritonitis-induced AKI by polymicrobial insult. ⋯ CeO2 nanoparticles scavenge reactive oxygen species and attenuate polymicrobial insult induced increase in inflammatory mediators and subsequent AKI. Taken together, the data indicate that CeO2 nanoparticles may be useful as an alternative therapeutic agent or in conjunction with standard medical care for the treatment of peritonitis induced acute kidney injury.