Expert review of neurotherapeutics
-
Expert Rev Neurother · Aug 2012
ReviewStroke rehabilitation using noninvasive cortical stimulation: motor deficit.
Noninvasive cortical stimulation (NICS) has been used during the acute, postacute and chronic poststroke phases to improve motor recovery in stroke patients having upper- and/or lower-limb paresis. This paper reviews the rationale for using the different NICS modalities to promote motor stroke rehabilitation. The changes in cortical excitability after stroke and the possible mechanisms of action of cortical stimulation in this context are outlined. ⋯ The goal of these studies was to reduce the inhibition exerted by the unaffected hemisphere on the affected hemisphere and to then restore a normal balance of interhemispheric inhibition. All these NICS techniques administered alone or in combination with various methods of neurorehabilitation were found to be safe and equally effective at the short term on various aspects of poststroke motor abilities. However, the long-term effect of NICS on motor stroke needs to be further evaluated before considering the use of such a technique in the daily routine management of stroke.
-
Stroke is a common, potentially devastating disease with potential high morbidity and mortality. Recognition at the onset of acute ischemic stroke is pivotal to changing outcomes such as intravenous thrombolysis. Stroke monitoring is a burgeoning field with various methods described and newer devices that aid in detecting acute or worsening ischemia that can lead to improved bedside and intensive care unit management. This article describes various methods of bedside stroke monitoring including newer techniques of intracranial pressure monitoring using the pressure reactivity index and compensatory reserve index to detect changes in autoregulatory states, noninvasive intracranial pressure monitoring, quantitative EEG with alpha-delta ratio, transcranial Doppler, methods of arteriovenous brain oxygen monitoring such as jugular venous oxygen and near-infrared spectroscopy, invasive brain oxygen probes such as Licox™ (brain tissue O₂), cerebral blood flow probe (CBF Hemedex™) and cerebral microdialysis.