Vascular pharmacology
-
Vascular pharmacology · Feb 2019
Comparative StudyAdenosine receptor agonists deepen the inhibition of platelet aggregation by P2Y12 antagonists.
Several adenosine receptor (AR) agonists have been shown in the past to possess anti-platelet potential; however, the adjunctive role of AR agonists in anti-platelet therapy with the use of P2Y12 receptor inhibitors has not been elucidated so far. This in vitro aggregation-based study investigates whether the inhibition of platelet function mediated by cangrelor or prasugrel metabolite can be potentiated by AR agonists. It evaluates the effect of non-selective (2-chloroadenosine), A2A-selective (UK 432097, MRE 0094, PSB 0777) and A2B-selective AR agonists (BAY 60-6583) on platelet function in relation to their toxicity, specificity towards adenosine receptor subtypes, structure and solubility. ⋯ This compound diminished platelet aggregation at nanomolar concentrations and further augmented platelet inhibition by P2Y12 antagonists by approx. 60% (P < .01). Our results indicate the importance of adenosine receptors as therapeutic targets and point out challenges and potential benefits of therapeutic use of a combined therapy of P2Y12 antagonist and AR agonist in cardioprotection. Our comparative analysis of the effects of AR agonists on platelet response in plasma and whole blood may indirectly suggest that other blood morphology elements contribute little to the inhibition of platelet function by AR agonists.
-
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. ⋯ However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
-
Vascular pharmacology · Nov 2018
Comparative StudyEffects of toceranib compared with sorafenib on monocrotaline-induced pulmonary arterial hypertension and cardiopulmonary remodeling in rats.
Sorafenib reverses pulmonary arterial hypertension (PAH) and cardiopulmonary remodeling (CPR), but the effects of toceranib are unknown. This study investigated anti-remodeling effects and determined optimal doses of toceranib and sorafenib on monocrotaline (MCT)-induced PAH and CPR in rats. MCT-treated rats were orally treated with a 14-day course of sorafenib (10, 30, or 100 mg/kg), toceranib (1, 3, or 10 mg/kg), or water. ⋯ Besides the stronger inhibition on mitogen-activated protein kinase signaling, the greater reversal ability of sorafenib may be also due to the simultaneous blockade on the C-X-C chemokine receptor type 4 and autophagy induction. Toceranib insignificantly reversed CPR, and a high-dose therapy did not improve the RV hemodynamic outcomes. Sorafenib significantly reversed CPR, and a low-dose sorafenib therapy may be a suitable therapeutic agent for PAH.
-
Vascular pharmacology · Jan 2018
Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice.
An increased density of intraplaque (IP) microvessels in ruptured versus nonruptured human plaques suggests that IP neovascularization has a major causative effect on plaque development and instability. Possibly, vascular endothelial growth factor (VEGF) or other angiogenic factors mediate IP microvessel growth and plaque destabilization. Because apolipoprotein deficient mice with a heterozygous mutation (C1039G+/-) in the fibrillin-1 gene (ApoE-/-Fbn1C1039G+/-) manifest substantial IP neovascularization, they represent a unique tool to further investigate angiogenesis and its role in atherosclerosis. Here, we examined whether administration of axitinib (inhibitor of VEGF receptor-1,-2 and -3) inhibits IP neovascularization and stabilizes atherosclerotic plaques. ⋯ Inhibition of VEGF receptor signalling by axitinib attenuates intraplaque angiogenesis and plaque destabilization in mice.
-
Vascular pharmacology · Jan 2018
ReviewRegulation and function of endothelial glycocalyx layer in vascular diseases.
In the vascular system, the endothelial surface layer (ESL) as the inner surface of blood vessels affects mechanotransduction, vascular permeability, rheology, thrombogenesis, and leukocyte adhesion. It creates barriers between endothelial cells and blood and neighbouring cells. ⋯ This leads to increased capillary permeability, leucocyte-endothelium interactions, thrombosis and vascular inflammation, the latter further driving glycocalyx destruction. The present review highlights current knowledge on the vasculoprotective role of the ESL, with specific emphasis on its remodelling in inflammatory vascular diseases and discusses its potential as a novel therapeutic target to treat vascular pathologies.