Articles: mechanical-ventilation.
-
The characteristics and outcomes of adult patients with respiratory syncytial virus (RSV) infection who require ICU admission are poorly defined. Although several studies in adults with RSV infection have been published in recent years, they did not focus specifically on patients with critical illness. ⋯ Adult patients in the ICU with RSV infection differ from adult patients in the ICU with influenza in terms of comorbidities and characteristics at diagnosis. RSV infection was associated with high in-hospital mortality, approaching 25%. In multivariate analysis, RSV infection was associated with a similar odds of in-hospital death compared with influenza infection.
-
Semin Respir Crit Care Med · Jun 2022
Physiological and Pathophysiological Consequences of Mechanical Ventilation.
Mechanical ventilation is a life-support system used to ensure blood gas exchange and to assist the respiratory muscles in ventilating the lung during the acute phase of lung disease or following surgery. Positive-pressure mechanical ventilation differs considerably from normal physiologic breathing. This may lead to several negative physiological consequences, both on the lungs and on peripheral organs. ⋯ Multiple parameters must be adjusted appropriately to minimize ventilator-induced lung injury (VILI), including: inspiratory stress (the respiratory system inspiratory plateau pressure); dynamic strain (the ratio between tidal volume and the end-expiratory lung volume, or inspiratory capacity); static strain (the end-expiratory lung volume determined by positive end-expiratory pressure [PEEP]); driving pressure (the difference between the respiratory system inspiratory plateau pressure and PEEP); and mechanical power (the amount of mechanical energy imparted as a function of respiratory rate). More recently, patient self-inflicted lung injury (P-SILI) has been proposed as a potential mechanism promoting VILI. In the present chapter, we will discuss the physiological and pathophysiological consequences of mechanical ventilation and how to personalize mechanical ventilation parameters.
-
This paper provides a review of a selection of papers published in the Journal of Clinical Monitoring and Computing in 2020 and 2021 highlighting what is new within the field of respiratory monitoring. Selected papers cover work in pulse oximetry monitoring, acoustic monitoring, respiratory system mechanics, monitoring during surgery, electrical impedance tomography, respiratory rate monitoring, lung ultrasound and detection of patient-ventilator asynchrony.
-
Semin Respir Crit Care Med · Jun 2022
Mechanical Ventilation during ECMO: Lessons from Clinical Trials and Future Prospects.
Acute Respiratory Distress Syndrome (ARDS) accounts for 10% of ICU admissions and affects 3 million patients each year. Despite decades of research, it is still associated with one of the highest mortality rates in the critically ill. Advances in supportive care, innovations in technologies and insights from recent clinical trials have contributed to improved outcomes and a renewed interest in the scope and use of Extracorporeal life support (ECLS) as a treatment for severe ARDS, including high flow veno-venous Extracorporeal Membrane Oxygenation (VV-ECMO) and low flow Extracorporeal Carbon Dioxide Removal (ECCO2R). ⋯ Ventilation strategies are adapted to the patient's condition during the different stages of ECMO support. Several areas in the management of mechanical ventilation in patients on ECMO, such as the best ventilator mode, extubation-decannulation sequence and tracheostomy timing, are tailored to the patients' recovery. Reduction in sedation allowing mobilization, nutrition and early rehabilitation are subsequent therapeutic goals after lung rest has been achieved.
-
J Clin Monit Comput · Jun 2022
In vitro validation and characterization of pulsed inhaled nitric oxide administration during early inspiration.
Admixture of nitric oxide (NO) to the gas inspired with mechanical ventilation can be achieved through continuous, timed, or pulsed injection of NO into the inspiratory limb. The dose and timing of NO injection govern the inspired and intrapulmonary effect site concentrations achieved with different administration modes. Here we test the effectiveness and target reliability of a new mode injecting pulsed NO boluses exclusively during early inspiration. ⋯ Pulsed early inspiratory phase NO injection is as effective as continuous or non-selective admixture of NO to inspired gas and may confer improved target reliability, especially at low, lung protective tidal volumes.