Articles: mechanical-ventilation.
-
Clinical Trial
Lung Response to a Higher Positive End-Expiratory Pressure in Mechanically Ventilated Patients With COVID-19.
International guidelines suggest using a higher (> 10 cm H2O) positive end-expiratory pressure (PEEP) in patients with moderate-to-severe ARDS due to COVID-19. However, even if oxygenation generally improves with a higher PEEP, compliance, and Paco2 frequently do not, as if recruitment was small. ⋯ Patients with early ARDS due to COVID-19, ventilated in the supine position, present with a large potential for lung recruitment. Even so, their compliance and Paco2 do not generally improve with a higher PEEP, possibly because of hyperinflation.
-
Observational Study
Limitations of the ARDS criteria during high-flow oxygen or non-invasive ventilation: evidence from critically ill COVID-19 patients.
The ratio of partial pressure of arterial oxygen to inspired oxygen fraction (PaO2/FIO2) during invasive mechanical ventilation (MV) is used as criteria to grade the severity of respiratory failure in acute respiratory distress syndrome (ARDS). During the SARS-CoV2 pandemic, the use of PaO2/FIO2 ratio has been increasingly used in non-invasive respiratory support such as high-flow nasal cannula (HFNC) and non-invasive ventilation (NIV). The grading of hypoxemia in non-invasively ventilated patients is uncertain. The main hypothesis, investigated in this study, was that the PaO2/FIO2 ratio does not change when switching between MV, NIV and HFNC. ⋯ HFNC is associated with lower PaO2/FIO2 ratio than either NIV or MV in the same patient, while NIV and MV provided similar PaO2/FIO2 and thus ARDS grade by Berlin definition. The large variation of PaO2/FIO2 ratio indicates that great caution should be used when estimating ARDS grade as a measure of pulmonary damage during HFNC.
-
Background: The best way to offer non-invasive respiratory support across several aetiologies of acute respiratory failure (ARF) is presently unclear. Both high flow nasal catheter (HFNC) therapy and non-invasive positive pressure ventilation (NIPPV) may improve outcomes in critically ill patients by avoiding the need for invasive mechanical ventilation (IMV). Objective: Describe the details of the protocol and statistical analysis plan designed to test whether HFNC therapy is non-inferior or even superior to NIPPV in patients with ARF due to different aetiologies. ⋯ Results and conclusions: RENOVATE is designed to provide evidence on whether HFNC therapy improves, compared with NIPPV, important patient-centred outcomes in different aetiologies of ARF. Here, we describe the rationale, design and status of the trial. Trial registration:ClinicalTrials.gov NCT03643939.