Articles: mechanical-ventilation.
-
Annals of intensive care · Jul 2020
Impact of the perioperative inotropic support in grown-up congenital heart patients undergoing cardiac surgery: a propensity score adjusted analysis.
Grown-up congenital heart (GUCH) patients represent a growing population with a high morbidity risk when undergoing reparative surgery. A main preoperative feature is right ventricular failure, which represents a risk factor for postoperative low cardiac output syndrome. Levosimendan has a potentially beneficial effect. This retrospective study included consecutive GUCH patients with surgeries in a tertiary cardiothoracic centre between 01-01-2013 and 01-10-2017, to test the hypothesis that the postoperative use of levosimendan might be associated with shorter time of mechanical ventilation, when compared with the use of milrinone. To adjust for bias related to the probability of treatment assignment, it uses the inverse propensity score weighting methodology. ⋯ We report a beneficial effect in terms of duration of mechanical ventilation and intensive care stay, and on inotropic requirements of the use of levosimendan following GUCH surgeries. The use of levosimendan in this setting requires validation at a larger scale.
-
Observational Study
Airway and transpulmonary driving pressures and mechanical powers selected by INTELLiVENT-ASV in passive, mechanically ventilated ICU patients.
Driving pressure (ΔP) and mechanical power (MP) are predictors of the risk of ventilation- induced lung injuries (VILI) in mechanically ventilated patients. INTELLiVENT-ASV® is a closed-loop ventilation mode that automatically adjusts respiratory rate and tidal volume, according to the patient's respiratory mechanics. ⋯ In this short term observation study, INTELLiVENT-ASV selected ΔP and MP considered in safe ranges for lung protection. In a subgroup of ARDS patients, the combination of a recruitment strategy and INTELLiVENT-ASV resulted in an apparently safe ΔPL and MPL.
-
Soft mist inhalers (SMIs) generate aerosols with a smaller particle size than pressurized metered-dose inhalers (pMDIs). However, the whole-span particle size distribution (PSD) of SMIs and the optimal delivery method of SMIs during mechanical ventilation have not been fully investigated. This study aimed to measure the PSD of the SMI alone and the SMI coupled to an inhalation aid (eg, a spacer, a valved holding chamber), as well as the delivery efficiency of SMI in different actuation timings and circuit positions during mechanical ventilation. As a suitable comparison, the pMDI was chosen for the same measurement. ⋯ The SMI with an inhalation aid showed marginal improvement on the PSD. The inhaler type, actuation timing, and position within the circuit also played important roles in delivery efficiency during mechanical ventilation.