Articles: mechanical-ventilation.
-
BMC pulmonary medicine · Aug 2016
Influence of weaning methods on the diaphragm after mechanical ventilation in a rat model.
Mechanical ventilation (MV) is associated with diaphragm weakness, a phenomenon termed ventilator-induced diaphragmatic dysfunction. Weaning should balance diaphragmatic loading as well as prevention of overload after MV. The weaning methods pressure support ventilation (PSV) and spontaneous breathing trials (SBT) lead to gradual or intermittent reloading of a weak diaphragm, respectively. This study investigated which weaning method allows more efficient restoration of diaphragm homeostasis. ⋯ MV resulted in a loss of diaphragmatic contractility, which was aggravated in SBT and PSV despite reversal of oxidative stress and proteolysis.
-
Hyperoxia is common practice in the acute management of circulatory shock, and observational studies report that it is present in more than 50 % of mechanically ventilated patients during the first 24 h after intensive care unit (ICU) admission. On the other hand, "oxygen toxicity" due to the increased formation of reactive oxygen species limits its use due to serious deleterious side effects. However, formation of reactive oxygen species to boost bacterial killing is one of the body's anti-microbial auto-defense mechanisms and, hence, O2 has been referred to as an antibiotic. ⋯ However, there is ample evidence that long-term exposure to hyperoxia impaired bacterial phagocytosis and thereby aggravated both bacterial burden and dissemination. Moreover, a recent retrospective study identified the number of days with hyperoxia, defined as a PaO2 > 120 mmHg only, as an independent risk factor of ventilator-associated pneumonia in patients needing mechanical ventilation for more than 48 h. Since so far the optimal oxygenation target is unknown for ICU patients, "conservative" O2 therapy represents the treatment of choice to avoid exposure to both hypoxemia and excess hyperoxemia.
-
Am. J. Respir. Crit. Care Med. · Aug 2016
ReviewLung-kidney Crosstalk in the Critically Ill Patient.
Discoveries have emerged highlighting the complex nature of the interorgan cross-talk between the kidney and the lung. Vascular rigidity, neurohormonal activation, tissue hypoxia, and abnormal immune cell signaling have been identified as common pathways leading to the development and progression of chronic kidney disease. However, our understanding of the causal relationships between lung injury and kidney injury is not precise. ⋯ Right ventricular dysfunction and congestive states may contribute to alterations of renal perfusion and oxygenation, leading to diuretic resistance and recurrent hospitalization. In patients with concomitant respiratory failure, noninvasive ventilation represents a promising treatment option for the correction of impaired renal microcirculation and endothelial dysfunction. In patients requiring extracorporeal membrane oxygenation, short- and long-term monitoring of kidney function is warranted, as they are at highest risk of developing acute kidney injury and fluid overload.
-
Randomized Controlled Trial Pragmatic Clinical Trial
Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: a study protocol for a randomised controlled trial.
Prolonged need for intensive care is associated with neuromuscular weakness, termed Intensive Care Unit Acquired Weakness. Those affected suffer from severe functional impairment that can persist for years. First studies suggest a positive effect of physiotherapy and early mobilisation. However, the ideal intervention for a preferential functional outcome is not known. So far no randomised controlled trial has been conducted to specifically evaluate an early endurance and resistance training in the mechanically ventilated, critically ill patient. ⋯ This prospective, single-centre, allocation-concealed and assessor-blinded randomised controlled trial will evaluate participant's function after an early endurance and resistance training compared to standard care. Limitations of this study are the heterogeneity of the critically ill and the discontinuity of the protocol after relocation to the ward. The strengths lie in the pragmatic design and the clinical significance of the chosen outcome measures.
-
Expert systems can help alleviate problems related to the shortage of human resources in critical care, offering expert advice in complex situations. Expert systems use contextual information to provide advice to staff. In mechanical ventilation, it is crucial for an expert system to be able to determine the ventilatory mode in use. Different manufacturers have assigned different names to similar or even identical ventilatory modes so an expert system should be able to detect the ventilatory mode. The aim of this study is to evaluate the accuracy of an algorithm to detect the ventilatory mode in use. ⋯ The computerized algorithm can reliably identify ventilatory mode.