Articles: trauma.
-
Crit Rev Biomed Eng · Jan 2011
ReviewBiomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges.
Damage to the peripheral nervous system is surprisingly common and occurs primarily from trauma or a complication of surgery. Although recovery of nerve function occurs in many mild injuries, outcomes are often unsatisfactory following severe trauma. Nerve repair and regeneration presents unique clinical challenges and opportunities, and substantial contributions can be made through the informed application of biomedical engineering strategies. ⋯ In this fight for time, degeneration of the distal nerve support structure and target progresses, ultimately blunting complete functional recovery. Thus, the most pressing challenges in peripheral nerve repair include the development of tissue-engineered nerve grafts that match or exceed the performance of autografts, the ability to noninvasively assess nerve damage and track axonal regeneration, and approaches to maintain the efficacy of the distal pathway and targets during the regenerative process. Biomedical engineering strategies can address these issues to substantially contribute at both the basic and applied levels, improving surgical management and functional recovery following severe peripheral nerve injury.
-
Prehospital trauma care developed over the last decades parallel in many countries. Most of the prehospital emergency medical systems relied on input or experiences from military medicine and were often modeled after the existing military procedures. ⋯ Establishing and securing the airway, ventilation, fluid resuscitation, and in addition, the quick transport to the best-suited trauma center represent the pillars of trauma care in the field. While ABC in trauma care has neither been challenged nor changed, new techniques, tools and procedures have been developed to make it easier for the prehospital provider to achieve these goals in the prehospital setting and thus improve the outcome of trauma patients.
-
Ther Hypothermia Temp Manag · Jan 2011
A review of clinical trials of hypothermia treatment for severe traumatic brain injury.
Clinical trials of hypothermia treatment of traumatic brain injury can be divided into (1) trials designed to abort the biochemical cascade after injury-neuroprotection, (2) trials primarily designed to test the effect of hypothermia in reducing elevated intracranial pressure (ICP), and (3) trials with features of both neuroprotection and elevated ICP control. Three of the four clinical trials testing hypothermia induction after failure of conventional means of ICP control showed decreased mortality rate, though sample sizes were small and findings were not always statistically significant. Nine randomized trials have tested hypothermia as a neuroprotectant, inducing it from 2.5 to 15 hours after injury and continuing it for a predetermined period of time regardless of ICP. ⋯ All found improved outcome and reduced ICP. Based on these findings and the negative results of neuroprotection trials that extended hypothermia for a defined period of time, it is likely that the mechanism of protection in these combined mechanism trials was early control of ICP. This literature suggests the need for clinical trials with two distinct objectives-(1) testing hypothermia for ICP control when conventional means (sedation and paralysis, mannitol, hyperventilation, and cerebrospinal fluid drainage) fail and (2) testing early induction of hypothermia before hematoma evacuation individualizing the duration of hypothermia to the patient's ICP responses.