Articles: pandemics.
-
Anaesthesiol Intensive Ther · Jan 2020
ReviewCOVID-19: What do we need to know about ICU delirium during the SARS-CoV-2 pandemic?
In March 2020, the World Health Organisation announced the COVID-19 pandemic caused by the SARS-CoV-2 virus. As well as respiratory failure, the SARS-CoV-2 may cause central nervous system (CNS) involvement, including delirium occurring in critically ill patients (ICU delirium). Due attention must be paid to this subject in the face of the COVID-19 pandemic. ⋯ Early identification of patients with delirium is critical in patients with COVID-19 because the occurrence of delirium may be an early symptom of worsening respiratory failure or of infectious spread to the CNS mediated by potential neuroinvasive mechanisms of the coronavirus. The purpose of this review is to identify problems related to the development of delirium during the COVID-19 epidemic, which are presented in three areas: i) factors contributing to delirium in COVID-19, ii) potential pathophysiological factors of delirium in COVID-19, and iii) long-term consequences of delirium in COVID-19. This article discusses how healthcare workers can reduce the burden of delirium by identifying potential risk factors and difficulties during challenges associated with SARS-CoV-2 infection.
-
Current drug targets · Jan 2020
ReviewFacts and myths: Efficacies of repurposing chloroquine and hydroxychloroquine for the treatment of COVID-19.
The emergence of coronavirus disease 2019 (COVID-19) is caused by the 2019 novel coronavirus (2019-nCoV). The 2019-nCoV first broke out in Wuhan and subsequently spread worldwide owing to its extreme transmission efficiency. The fact that the COVID-19 cases and mortalities are reported globally and the WHO has declared this outbreak as the pandemic, the international health authorities have focused on rapid diagnosis and isolation of patients as well as search for therapies able to counter the disease severity. ⋯ Repurposing anti-malarial drugs and chloroquine (CQ)/ hydroxychloroquine (HCQ) have shown efficacy to inhibit most coronaviruses, including SARS-CoV-1 coronavirus. These CQ analogues have shown potential efficacy to inhibit 2019-nCoV in vitro that leads to focus several future clinical trials. This review discusses the possible effective roles and mechanisms of CQ analogues for interfering with the 2019-nCoV replication cycle and infection.