Articles: traumatic-brain-injuries.
-
Observational Study
Predicting outcomes of decompressive craniectomy: use of Rotterdam Computed Tomography Classification and Marshall Classification.
Data on the evaluation of the Rotterdam Computed Tomography Classification (RCTS) as a predictor of outcomes in patients undergoing decompressive craniectomy (DC) for trauma is limited and lacks clarity. ⋯ RCTS is an independent predictor of unfavourable outcomes and mortality among patients undergoing emergency DC.
-
Successful therapy for TBI disabilities awaits refinement in the understanding of TBI neurobiology, quantitative measurement of treatment-induced incremental changes in recovery trajectories, and effective translation to human TBI using quantitative methods and protocols that were effective to monitor recovery in preclinical models. Details of the specific neurobiology that underlies these injuries and effective quantitation of treatment-induced changes are beginning to emerge utilizing a variety of preclinical and clinical models (for reviews see (Morales et al., Neuroscience 136:971-989, 2005; Fujimoto et al., Neurosci Biobehav Rev 28:365-378, 2004; Cernak, NeuroRx 2:410-422, 2005; Smith et al., J Neurotrauma 22:1485-1502, 2005; Bose et al., J Neurotrauma 30:1177-1191, 2013; Xiong et al., Nat Rev Neurosci 14:128-142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67-84, 2009; Johnson et al., Handb Clin Neurol 127:115-128, 2015; Bose et al., Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, CRC Press/Taylor & Francis, Boca Raton, 2015)). Preclinical models of TBI, essential for the efficient study of TBI neurobiology, benefit from the setting of controlled injury and optimal opportunities for biometric quantitation of injury and treatment-induced changes in the trajectories of disability. ⋯ Accordingly, use of this preclinical model offers an opportunity for (a) gaining a greater understanding of the relationships of TBI induced diffuse axonal injuries and associated long term disabilities, and (b) to provide a platform for quantitative assessment of treatment interactions upon the trajectories of TBI-induced disabilities. Using the impact acceleration closed head TBI model to induce mild/moderate injuries in the rat, we have observed and quantitated multiple morbidities commonly observed following TBI in humans (Bose et al., J Neurotrauma 30:1177-1191, 2013). This chapter describes methods and protocols used for TBI-induced multiple morbidity involving cognitive dysfunction, balance instability, spasticity and gait, and anxiety-like disorder.
-
Stem Cells Transl Med · Jan 2016
Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury.
More than 6.5 million patients are burdened by the physical, cognitive, and psychosocial deficits associated with traumatic brain injury (TBI) in the U.S. Despite extensive efforts to develop neuroprotective therapies for this devastating disorder, there have been no successful outcomes in human clinical trials to date. Retrospective studies have shown that β-adrenergic receptor blockers, specifically propranolol, significantly decrease mortality of TBI through mechanisms not yet fully elucidated but are thought to counterbalance a hyperadrenergic state resulting from a TBI. Conversely, cellular therapies have been shown to improve long-term behavior following TBI, likely by reducing inflammation. Given the nonredundancy in their therapeutic mechanisms, we hypothesized that a combination of acute propranolol followed by mesenchymal stem cells (MSCs) isolated from human bone marrow would have additive effects in treating a rodent model of TBI. We have found that the treatments are well-tolerated individually and in combination with no adverse events. MSCs decrease BBB permeability at 96 hours after injury, inhibit a significant accumulation of activated microglia/macrophage in the thalamic region of the brain both short and long term, and enhance neurogenesis short term. Propranolol decreases edema and reduces the number of fully activated microglia at 7 days and the number of semiactivated microglia at 120 days. Combinatory treatment improved cognitive and memory functions 120 days following TBI. Therefore, the results here suggest a new, efficacious sequential treatment for TBI may be achieved using the β-blocker propranolol followed by MSC treatment. ⋯ Despite continuous efforts, traumatic brain injury (TBI) remains the leading cause of death and disability worldwide in patients under the age of 44. In this study, an animal model of moderate-severe TBI was treated with an acute dose of propranolol followed by a delayed dose of human mesenchymal stem cells (MSCs), resulting in improved short- and long-term measurements. These results have direct translational application. They reinforce the inevitable clinical trial of MSCs to treat TBI by demonstrating, among other benefits, a notable decrease in chronic neuroinflammation. More importantly, these results demonstrate that MSCs and propranolol, which is increasingly being used clinically for TBI, are compatible treatments that improve overall outcome.
-
Brain injury : [BI] · Jan 2016
Protective effect of rhEPO on tight junctions of cerebral microvascular endothelial cells early following traumatic brain injury in rats.
The goal of this study was to investigate the protective effect of recombinant human EPO(rhEPO) on cerebral microvascular endothelial cells and the mechanisms by which rhEPO interacts with TJs proteins, claudin-5, Occludin and ZO-1 during the early period following traumatic brain injury. ⋯ It was found that administration of rhEPO protected cerebral microvascular endothelial cells and reduced permeability of BBB and the mechanisms may be due to increasing the expression of TJs proteins.
-
Restor. Neurol. Neurosci. · Jan 2016
Neuroprotection and anti-seizure effects of levetiracetam in a rat model of penetrating ballistic-like brain injury.
We assessed the therapeutic efficacy of FDA-approved anti-epileptic drug Levetiracetam (LEV) to reduce post-traumatic nonconvulsive seizure (NCS) activity and promote neurobehavioral recovery following 10% frontal penetrating ballistic-like brain injury (PBBI) in male Sprague-Dawley rats. ⋯ These findings support the dual anti- seizure and neuroprotective role of LEV, but more importantly identify the importance of an extended dosing protocol which was specific to the therapeutic targets studied.