Articles: traumatic-brain-injuries.
-
Journal of neurotrauma · Mar 2015
Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury.
Traumatic brain injury (TBI) can cause sleep-wake disturbances and excessive daytime sleepiness. The pathobiology of sleep disorders in TBI, however, is not well understood, and animal models have been underused in studying such changes and potential underlying mechanisms. ⋯ Moderate TBI caused disturbances in the ability to maintain consolidated wake bouts during the active phase and chronic loss of wakefulness. Further, TBI resulted in cognitive impairments and depressive-like symptoms, and reduced the number of orexin-A-positive neurons in the lateral hypothalamus.
-
Journal of neurotrauma · Mar 2015
FRESH FROZEN PLASMA RESUSCITATION PROVIDES NEUROPROTECTION COMPARED WITH NORMAL SALINE IN A LARGE ANIMAL MODEL OF TRAUMATIC BRAIN INJURY AND POLYTRAUMA.
We have previously shown that early treatment with fresh frozen plasma (FFP) is neuroprotective in a swine model of hemorrhagic shock (HS) and traumatic brain injury (TBI). However, it remains unknown whether this strategy would be beneficial in a more clinical polytrauma model. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters, brain oxygenation, and intracranial pressure (ICP) and subjected to computer-controlled TBI and multi-system trauma (rib fracture, soft-tissue damage, and liver injury) as well as combined free and controlled hemorrhage (40% blood volume). ⋯ Levels of cerebral eNOS were higher in the FFP-treated group (852.9 vs. 816.4 ng/mL; p=0.03), but no differences in brain levels of ET-1 were observed. Early administration of FFP is neuroprotective in a complex, large animal model of polytrauma, hemorrhage, and TBI. This is associated with a favorable brain oxygenation and cerebral perfusion pressure profile as well as higher levels of endothelial-derived vasodilator eNOS, compared to normal saline resuscitation.
-
Journal of neurotrauma · Mar 2015
Endocannabinoid degradation inhibition improves neurobehavioral function, blood brain barrier integrity, and neuroinflammation following mild traumatic brain injury.
Traumatic brain injury (TBI) is an increasingly frequent and poorly understood condition lacking effective therapeutic strategies. Inflammation and oxidative stress (OS) are critical components of injury, and targeted interventions to reduce their contribution to injury should improve neurobehavioral recovery and outcomes. Recent evidence reveals potential protective, yet short-lived, effects of the endocannabinoids (ECs), 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA), on neuroinflammatory and OS processes after TBI. ⋯ Astrocyte and microglia activation was significantly increased post-TBI, and treatment with JZL184 or URB597 blocked activation of both cell types. These findings suggest that EC degradation inhibition post-TBI exerts neuroprotective effects. Whether repeated dosing would achieve greater protection remains to be examined.
-
Brain research bulletin · Mar 2015
High therapeutic potential of positive allosteric modulation of α7 nAChRs in a rat model of traumatic brain injury: proof-of-concept.
There are currently no clinically efficacious drug therapies to treat brain damage secondary to traumatic brain injury (TBI). In this proof-of-concept study, we used a controlled cortical impact model of TBI in young adult rats to explore a novel promising approach that utilizes PNU-120596, a previously reported highly selective Type-II positive allosteric modulator (α7-PAM) of α7 nicotinic acetylcholine receptors (nAChRs). α7-PAMs enhance and prolong α7 nAChR activation, but do not activate α7 nAChRs when administered without an agonist. ⋯ Our data support this hypothesis and demonstrate that subcutaneous administration of PNU-120596 post-TBI in young adult rats significantly reduces both brain cell damage and reactive gliosis. Therefore, our results introduce post-TBI systemic administration of α7-PAMs as a promising therapeutic intervention that could significantly restrict brain injury post-TBI and facilitate recovery of TBI patients.
-
Journal of neurosurgery · Mar 2015
Review Meta AnalysisImpact of intracranial pressure monitoring on mortality in patients with traumatic brain injury: a systematic review and meta-analysis.
Some studies have demonstrated that intracranial pressure (ICP) monitoring reduces the mortality of traumatic brain injury (TBI). But other studies have shown that ICP monitoring is associated with increased mortality. Thus, the authors performed a meta-analysis of studies comparing ICP monitoring with no ICP monitoring in patients who have suffered a TBI to determine if differences exist between these strategies with respect to mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. ⋯ In this systematic review and meta-analysis of ICP monitoring studies, the authors found that the current clinical evidence does not indicate that ICP monitoring overall is significantly superior to no ICP monitoring in terms of the mortality of TBI patients. However, studies published after 2012 indicated a lower mortality in patients who underwent ICP monitoring.