Articles: traumatic-brain-injuries.
-
Traumatic brain injury (TBI) is often associated with uncontrolled hemorrhagic shock (UHS), which contributes significantly to the mortality of severe trauma. Studies have demonstrated that permissive hypotension resuscitation improves the survival for uncontrolled hemorrhage. What the ideal target mean arterial pressure (MAP) is for TBI with UHS remains unclear. ⋯ A 50-mm Hg target MAP is not suitable for the resuscitation of TBI combined with UHS. A 70 mm Hg of MAP is the ideal target resuscitation pressure for this trauma, which can keep sufficient perfusion to the brain and keep good organ function including cerebral mitochondrial function.
-
Epidemiological studies have associated increased risk of Alzheimer's disease (AD)-related clinical symptoms with a medical history of head injury. Currently, little is known about pathophysiology mechanisms linked to this association. Persistent neuroinflammation is one outcome observed in patients after a single head injury. ⋯ The neuroinflammatory responses were more persistent in the injured KI mice, leading to a chronic neuroinflammation. At late time points after injury, KI mice exhibited a significant impairment in radial arm water maze performance compared with sham KI mice or injured wild-type mice. Intervention with a small-molecule experimental therapeutic (MW151) that selectively attenuates proinflammatory cytokine production yielded improved cognitive behavior outcomes, consistent with a link between neuroinflammatory responses and altered risk for AD-associated pathology changes with head injury.
-
Proc. Natl. Acad. Sci. U.S.A. · Apr 2015
In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.
Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. ⋯ This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.
-
Poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays an important role in traumatic brain injury (TBI). The objective of this study was to investigate whether PARP activation participated in the blood-brain barrier (BBB) disruption and edema formation in a mouse model of controlled cortical impact (CCI). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally at 5 min and 8 h after experimental CCI. ⋯ Our data showed the up-regulation of nuclear factor-κB in cytosolic fractions and nuclear fractions in the injured cortex, and these changes were reversed by PJ34. Moreover, PJ34 significantly lessened the activities of myeloperoxidase and the levels of matrix metalloproteinase-9, enhanced the levels of occludin, laminin, collagen IV and integrin β1, reduced neurological deficits, decreased the contusion volume, and attenuated the necrotic and apoptotic neuronal cell death. These data suggest the protective effects of PJ34 on BBB integrity and cell death during acute TBI.
-
Journal of neurotrauma · Apr 2015
Multicenter Study Comparative Study Clinical TrialMeasurement of the GFAP-BDP Biomarker for the Detection of Traumatic Brain Injury Compared to CT and MRI.
Glial fibrillary acidic protein and its breakdown products (GFAP-BDP) are brain-specific proteins released into serum as part of the pathophysiological response after traumatic brain injury (TBI). We performed a multi-center trial to validate and characterize the use of GFAP-BDP levels in the diagnosis of intracranial injury in a broad population of patients with a positive clinical screen for head injury. This multi-center, prospective, cohort study included patients 16-93 years of age presenting to three level 1 trauma centers with suspected TBI (loss of consciousness, post-trauma amnesia, and so on). ⋯ Use of GFAP-BDP yielded a net benefit above clinical screening alone and a net reduction in unnecessary scans by 12-30%. Used in conjunction with other clinical information, rapid measurement of GFAP-BDP is useful in establishing or excluding the diagnosis of radiographically apparent intracranial injury throughout the spectrum of TBI. As an adjunct to current screening practices, GFAP-BDP may help avoid unnecessary CT scans without sacrificing sensitivity (Registry: ClinicalTrials.gov Identifier: NCT01565551).